
Exercise Set (due on Sunday 17th Nov 2019)
Elements of Mathematics – Bioinformatics for Health Sciences

1. Let

M =

[
1√
5

2√
5

2√
5
− 1√

5

]
.

(a) Is M invertible? Justify your answer.

Answer: Yes, it is. This is a square matrix with maximum rank. You can also check that it has
non-zero determinant: det(M) = − 1

5 −
4
5 = −1 6= 0.

(b) Compute M−1 using Gauss-Jordan elimination.

Answer: First notice that M = 1√
5
M0 where

M0 =

[
1 2
2 -1

]
Then M−1 =

√
5M−10 . Let’s compute M−10 (for convenience I will highlight the right hand side

matrix in yellow):

[
1 2 1 0

2 −1 0 1

]
i∼
[
1 2 1 0

0 −5 -2 1

]
ii∼

[
1 2 1 0

0 1 2/5 -1/5

]
iii∼

[
1 0 1/5 2/5

0 1 2/5 -1/5

]
,

with steps:

i. R2 ← R2 − 2 ·R1,

ii. R2 ← (−1/5) ·R2,

iii. R1 ← R1 − 2 ·R2.

Then

M−1 =
√

5

[
1/5 2/5
2/5 −1/5

]
=

[
1/
√

5 2/
√

5

2/
√

5 −1/
√

5

]
= M.

(c) Compute det(M) and det(M−1).

Answer: Since M = M−1, det(M) = det(M−1) = −1.

2. Notice that the determinant turns matrix multiplication into ordinary product of real numbers, that
is, if A,B ∈Mn×n are square matrices, then det(AB) = det(A) det(B).

Consider the matrices:

A =

 1 0 −3
0 2 2
0 0 7

 B =

 2 1 1
0 1 −1
0 0 −2


(a) Using the recursive definition of determinant, reason why the determinant of a diagonal matrix is

the product of the entries in the diagonal, i.e. if D = diag(λ1, . . . , λn) then det(D) = λ1 · . . . · λn.

Answer: The matrix D = (dij) has entries dii = λi and dij = 0 for i 6= j. The recursive definition
of determinant we saw in class reads as follows:

detD =

n∑
i=1

(−1)i+1di1 det(D−i1),



where D−i1 is the submatrix of D upon removing the i-th row and 1-st column. Since di1 = 0 for
all i 6= 1 and det(D−11) = diag(λ2, . . . , λn), the previous recurrence simplifies considerably:

detD = λ1 · det(diag(λ2, . . . , λn)).

Clearly the same argument used to compute the determinant of the smaller diagonal matrix, until
we reach the base case where we have to compute the determinant of the 1× 1 matrix [λn].

(b) Compute the determinant of the identity matrix.

Answer: Accoding to the previous remark det(Idn) = 1n = 1.

(c) Notice that the matrices A and B given above satisfy that all their entries below the diagonal are
zero: matrices satisfying this condition are known as “upper triangular” matrices. Reason why
the determinant of an upper triangular matrix is the product of the entries in the diagonal, i.e. if
T = (aij) is upper triangular, then det(T ) = a11 · . . . · ann.
Answer: By definition

detT =

n∑
i=1

(−1)i+1ai1 det(T−i1),

where ai1 = 0 for all i 6= 1 and T−11 is upper-triangular, then

detT = a11 · det(T−11).

Now the same line of reasoning can be as in part i) can be reproduced.

(d) Verify that the opening remark holds for the matrices A and B given above, that is, det(AB) =
det(A) det(B).

Answer: You can compute the three determinants and check the relation holds. Another avenue
is to reason why this is true in the case of upper-triangular matrices. First observe then that the
product of upper-triangular matrices has to yield an upper-triangular matrix. By the previous
part, to compute the determinant of AB we are only concerned about its diagonal entries: its i-th
diagonal entry is given by

(AB)ii =

n∑
k=1

aikbki = aiibii

since aik = 0 for k < i and bki = 0 for k > i. Consequently, det(AB) = (a11b11) · . . . · (annbnn).
Then it is clear that

det(AB) = (a11 · . . . · ann)(b11 · . . . · bnn) = det(A) det(B).

(e) Recall that when A is an invertible matrix, it satisfies AA−1 = A−1A = I. Making use of the
opening remark if necessary, reason why det(A−1) = 1/ det(A).

Answer: SinceAA−1 = A−1A = I by applying determinant we have det(AA−1) = det(A) det(A−1) =
det(Idm) = 1. Making use of the last two equations we conclude that det(A−1) = 1/ det(A). Also
there is no problem in dividing by det(A) because any invertible matrix has non-zero determinant.

3. Let

A =

 −4 2 0
2 −1 0
0 1 1

 .
Let fA : R3 → R3 be the linear map defined as fA(v) = Av.



(a) What is the rank of the matrix A? Justify your answer.

Answer: rank(A) ≤ 2 because the first two rows are multiples of each other, but since the last
two rows are linearly independent (why?) rank(A) ≥ 2. Then rank(A) = 2.

(b) Let {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)} be the canonical basis of R3.
Compute f(e1), f(e2) and f(e3).

Answer: Observe that f(e1), f(e2) and f(e3) are just the column vectors of A.

(c) Give a basis of the vector subspace S ⊂ R3 generated by f(e1), f(e2), f(e3).

Answer: Since rank(A) = 2 the columns of A do not form a linearly independent set., but two
of them – not necessarily any two of them – can. In this case f(e1), f(e2) generate S and are
linearly independent, consequently they are a basis of S.

4. The transpose matrix of A = (aij) ∈Mn×m is another matrix that has as rows the columns of A: it is
denoted At. In particular, notice that At ∈Mm×n. For example:

A =

 −1 1
2 −1
1 1

 At =

[
−1 2 1
1 −1 1

]
Taking the matrix A in the example:

(a) Can you deduce the sizes of AAt and AtA without doing any computation?

Answer: AAt has size 3× 3, while AtA has size 2× 2.

(b) Compute AAt and AtA.

Answer:

AAt =

 2 −3 0
−3 5 1
0 1 2

 , AAt =

[
6 −2
−2 3

]
(c) We say that a square matrix M is “symmetric” if At = A. Are AAt and AtA symmetric?

Answer: Yes, they are. The matrix AAt represents all the possible products rtirj where ri are the
rows of A. The matrix AtA represents all the possible products cticj where ci are the columns
of A. The symmetry of these matrices is just a consequence of the fact that vtw = wtv for any
column vectors v, w of the same size (see exercise below).

5. Given two data vectors X = (x1, . . . , xn) and Y = (y1, . . . , yn) of the same size, we define the mean
E(X), variance Var(X) and covariance Cov(X,Y ) as:

E(X) =
1

n

n∑
i=1

xi Var(X) =
1

n

n∑
i=1

(xi − E(X))2

Cov(X,Y ) =
1

n

n∑
i=1

(xi − E(X))(yi − E(Y )).

Informally, the mean embodies the idea of “center of mass” of the entries of a vector, the variance
measures the extent to which a set of values tends to depart away from their mean; the covariance
measures the extent to which two collections of values tend to depart from the respective means
concordantly.

Given the following dummy data table:

X Y Z
sample 1 -1 3 5
sample 2 0 6 3
sample 3 1 9 1



(a) Compute E(X), E(Y ) and E(Z).

Answer: E(X) = 0, E(Y ) = 6, E(Z) = 3.

(b) Compute Var(X), Var(Y ) and Var(Z).

Answer: Var(X) = 1/3(12 + 12) = 2/3, Var(Y ) = 1/3(32 + 32) = 6, Var(Z) = 1/3(22 + 22) = 8/3.

(c) Compute cov(X,Y ).

Answer: cov(X,Y ) = 1/3 [(−1) · (−3) + 0 · 0 + 1 · 3] = 2

(d) Let

1 =

 1
1
1


Compute 11t.

Answer:

11t =

1 1 1
1 1 1
1 1 1


(e) Let

Y =

 3
6
9


and define a new vector

CY = Y − E(Y )1.

Compute E(CY ).

Answer: E(CY ) = E(Y − E(Y )1) = E(Y )− E(E(Y )1) = E(Y )− E(Y ) = 0.

(f) Let

C3 = I3 −
1

3
11t,

where I3 is the 3× 3 identity matrix. Compute C3. Check that C3Y = CY . Can you guess why
the matrix C3 is known as the “centering matrix” of R3?

Answer:

C3 =

1 0 0
0 1 0
0 0 1

− 1

3

1 1 1
1 1 1
1 1 1

 =

 2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3

 .
It is apparent that the effect of multiplying a column vector by Cn is to center all its entries at
the mean.

(g) Let

A =

 −1 3
0 6
1 9

 .
Observed that A encodes the two feature vectors corresponding to X and Y in the dummy table.
Compute B = C3A. Explain in simple terms what is the effect that multiplying by C3 has on A.

Answer:

B = C3A =

−1 −3
0 0
1 3

 .



(h) Compute

ω =
1

3
BtB.

ω is known as the “covariance” matrix. Discuss whether you see any connections between the
entries of ω and the definitions of variance and covariance above.

Answer:

ω =
1

3
BtB =

1

3

[
2 6
6 18

]
=

[
2/3 2
2 6

]
.

It turns out that ω11 = Var(X), ω12 = ω21 = Cov(X,Y ), and ω22 = Var(Y ).

6. The length of a vector

v =

 v1
...
vn

 ∈ Rn

denoted ‖v‖, can be defined as ‖v‖ =
√
vtv

(a) Compute the lengths of v = (1, 1, 0) and w = (1, 2, 0), respectively.

Answer: ‖v‖ =
√

12 + 12 =
√

2, ‖w‖ =
√

12 + 22 =
√

5.

(b) Find a scalar α ∈ R such that ‖αv‖ = 1. Do the same for w.

Answer: Notice that in general ‖αv‖ =
√
α2‖v‖ = |α|‖v‖. For v, αv = 1/‖v‖ = 1/

√
2 is one

possible solution. The same for w, αw = 1/‖w‖ = 1/
√

5 is one possible solution. Are there any
other solutions?

(c) Observe that given two vectors v, w ∈ Rn then vtw = wtv. Can you explain why?

Answer: Both expressions yield the following scalar:

n∑
i=1

viwi.

(d) We say that two vectors v, w ∈ Rn are orthogonal whenever vtw = 0. Given

v =

 1
0
−2

 ∈ Rn

find two linearly independent vectors w1 and w2 such that both are orthogonal to v.

Answer: In this exercise we are bound to find vectors w = (a, b, c) such that

a− 2c = 0.

We can provide any such vector with the constraint a = 2c. One simple solution is to make
a = c = 0 and choose any b 6= 0, like (0, 1, 0). Now, if we can given another non-zero solution
with b 6= 0 we would have produced two linearly independent vectors that fulfill the orthogonality
requirement. In fact, we could take b = 0 and a 6= 0, for instance, a = 2, then c = 1. In summary,
we could just give w1 = (2, 0, 1) and w2 = (0, 1, 0).

7. (Bonus Track) Given the binary data D = {(xi, yi) | xi, yi ∈ {0, 1}, i = 1, . . . , N} we can fit a logistic
regression model by maximizing the following log-likelihood function:

L(a, b) =

N∑
i=1

−(axi + b) + (axi + b)yi − log(1 + e−(axi+b))

where a, b ∈ R are the parameters of the model; in other words, solving the following optimization
problem: â, b̂ = argmaxa,bL(a, b). In this exercise we are tackling this problem. For this purpose, recall
that the binary data D can also be specified as a contingency table:



y
0 1

x
0 n00 n01
1 n10 n11

where each nij ∈ N represents the count of data points that meet each of the four possible configurations
for (xi, yi) in D: (0, 0), (1, 0), (0, 1) and (1, 1).

(a) Prove the following identity:

∂L
∂a

=

N∑
i=1

xi

[
yi −

eaxi+b

1 + eaxi+b

]
.

(b) Prove the following identity:

∂L
∂b

=

N∑
i=1

[
yi −

eaxi+b

1 + eaxi+b

]
.

(c) Write ∂L/∂a as a function of a, b and the nij .

(d) Write ∂L/∂b as a function of a, b and the nij .

(e) Give an expression for the only critical point (â, b̂) of L as a function of the nij .


