Exercise Set (due on Sunday 17th Nov 2019)
Elements of Mathematics — Bioinformatics for Health Sciences

1. Let

ol

(a) Is M invertible? Justify your answer.

Shsl-
S5l

Answer: Yes, it is. This is a square matrix with maximum rank. You can also check that it has

non-zero determinant: det(M) = —1 — 3 = -1 #0.
(b) Compute M ~! using Gauss-Jordan elimination.

Answer: First notice that M = %MO where
1 2
w=[ 1]

Then M~! = \/SMO_ 1 Let’s compute My ! (for convenience I will highlight the right hand side
matrix in yellow):

1 2 1 0]:ft 2 1 0]lau|l 2 1 0 |4 |1 O 1/5 2/5
2 -1 0 1 01 2/5 -1/5 01 2/5 -1/5]

with steps:
i. Ro+ Ry —2-Ry,
ii. Ry« (—1/5) - Ra,
iii. Ry + R1 —2-R,.
Then

M—1:\/5[1/5 2/5]_[1/\/5 2/\/5} M

2/5 —1/5| ~ |2/v/5 —1/v/5]
(c) Compute det(M) and det(M~1).
Answer: Since M = M1, det(M) = det(M 1) = —1.
2. Notice that the determinant turns matrix multiplication into ordinary product of real numbers, that
is, if A, B € M, «y are square matrices, then det(AB) = det(A) det(B).

Consider the matrices:

1 0 =3 21 1
A=1]10 2 2 B=]01 -1
00 7 0 0 -2

(a) Using the recursive definition of determinant, reason why the determinant of a diagonal matrix is
the product of the entries in the diagonal, i.e. if D = diag(A1,...,A,) then det(D) =Xy -...- A,.

Answer: The matrix D = (d;;) has entries d;; = A; and d;; = 0 for i # j. The recursive definition
of determinant we saw in class reads as follows:

det D =Y "(=1)""d; det(D_),
=1



where D_;; is the submatrix of D upon removing the i-th row and 1-st column. Since d;; = 0 for
all i # 1 and det(D_11) = diag(Az, ..., ), the previous recurrence simplifies considerably:

det D = )\ - det(diag(Aa, ..., An)).

Clearly the same argument used to compute the determinant of the smaller diagonal matrix, until
we reach the base case where we have to compute the determinant of the 1 x 1 matrix [A,].

(b) Compute the determinant of the identity matrix.
Answer: Accoding to the previous remark det(Id,) = 1" = 1.

(c) Notice that the matrices A and B given above satisfy that all their entries below the diagonal are
zero: matrices satisfying this condition are known as “upper triangular” matrices. Reason why
the determinant of an upper triangular matrix is the product of the entries in the diagonal, i.e. if
T = (a;;) is upper triangular, then det(T) = a11 - ... - ann.

Answer: By definition

detT = Z(—l)i-‘rlail det(T,il),
i=1

where a;; = 0 for all ¢ #£ 1 and T_1; is upper-triangular, then

detT = aqp - det(T-11).

Now the same line of reasoning can be as in part i) can be reproduced.

(d) Verify that the opening remark holds for the matrices A and B given above, that is, det(AB) =
det(A) det(B).
Answer: You can compute the three determinants and check the relation holds. Another avenue
is to reason why this is true in the case of upper-triangular matrices. First observe then that the
product of upper-triangular matrices has to yield an upper-triangular matrix. By the previous
part, to compute the determinant of AB we are only concerned about its diagonal entries: its i-th
diagonal entry is given by

(AB)ii = > aikbri = aiby;
k=1

since a;, = 0 for k < i and by; = 0 for k > i. Consequently, det(AB) = (a11b11) - ... - (@nnbnn)-
Then it is clear that

det(AB) = (a11 ... anpn)(b11 - - .. bppn) = det(A) det(B).

(e) Recall that when A is an invertible matrix, it satisfies AA™! = A='A = I. Making use of the
opening remark if necessary, reason why det(A=1) = 1/det(A).
Answer: Since AA™! = A='A = [ by applying determinant we have det(AA~1) = det(A) det(A™1) =
det(Id,,) = 1. Making use of the last two equations we conclude that det(A~1) = 1/det(A). Also
there is no problem in dividing by det(A) because any invertible matrix has non-zero determinant.

3. Let
-4 2 0
A= 2 -1 0
0 1 1

Let fa : R? — R3 be the linear map defined as f4(v) = Av.



(a) What is the rank of the matrix A? Justify your answer.
Answer: rank(A) < 2 because the first two rows are multiples of each other, but since the last
two rows are linearly independent (why?) rank(A) > 2. Then rank(A) = 2.
(b) Let {e; = (1,0,0),e2 = (0,1,0),e3 = (0,0,1)} be the canonical basis of R3.
Compute f(e1), f(ez2) and f(es).
Answer: Observe that f(e1), f(e2) and f(es) are just the column vectors of A.
(c) Give a basis of the vector subspace S C R? generated by f(e1), f(ez2), f(e3).

Answer: Since rank(A4) = 2 the columns of A do not form a linearly independent set., but two
of them — not necessarily any two of them — can. In this case f(e1), f(e2) generate S and are
linearly independent, consequently they are a basis of S.

4. The transpose matrix of A = (a;;) € My,xm is another matrix that has as rows the columns of A: it is
denoted A?. In particular, notice that A* € M,,x,. For example:

-1 2 1
1 -1 1

Taking the matrix A in the example:

(a) Can you deduce the sizes of AA! and A*A without doing any computation?
Answer: AA?! has size 3 x 3, while A*A has size 2 x 2.

(b) Compute AA" and A*A.
Answer:

2 -3 0
AAt=|-3 5 1], AAt:{_62 _32]
0 1 2

(c) We say that a square matrix M is “symmetric” if A* = A. Are AA" and A’A symmetric?
Answer: Yes, they are. The matrix AA" represents all the possible products r¢r; where r; are the
rows of A. The matrix A*A represents all the possible products cic; where ¢; are the columns
of A. The symmetry of these matrices is just a consequence of the fact that viw = w'v for any
column vectors v, w of the same size (see exercise below).

5. Given two data vectors X = (z1,...,z,) and Y = (y1,...,yn) of the same size, we define the mean
E(X), variance Var(X) and covariance Cov(X,Y) as:

E(X) = %in Var(X) = % > (@i - B(X))?
i=1 ]

n

Cov(X,¥) = = 32— B(X)) (i — (V).

i=1

Informally, the mean embodies the idea of “center of mass” of the entries of a vector, the variance
measures the extent to which a set of values tends to depart away from their mean; the covariance
measures the extent to which two collections of values tend to depart from the respective means
concordantly.

Given the following dummy data table:

X\|Y | Z
samplel | -1 | 3 | 5
sample2 | 0 | 6 | 3
sample3 | 1 | 9 | 1




(a)

(b)

()

(d)

(f)

Compute E(X), E(Y) and E(Z).

Answer: E(X) =0, E(Y) =6, E(Z) =3.

Compute Var(X), Var(Y) and Var(Z).

Answer: Var(X) = 1/3(12+12) = 2/3, Var(Y) = 1/3(3%2 4+ 32) = 6, Var(Z) = 1/3(2%2 +22) = 8/3.
Compute cov(X,Y).

Answer: cov(X,Y)=1/3[(-1)-(-3)+0-0+1-3]=2

Let
1
1= 1
1
Compute 11°.
Answer:
1 1 1
11t=1(1 1 1
1 1 1
Let
3
Y=|6
9

and define a new vector

Compute E(Cy).
Answer: E(Cy) =E(Y —E(Y)1) =EY)-EEDY)1) =EY)-EY) =0.
Let

Cs =15 — %112

where I3 is the 3 x 3 identity matrix. Compute C3. Check that C3Y = Cy. Can you guess why
the matrix C3 is known as the “centering matrix” of R3?

Answer:
100 111 2/3 —1/3 —1/3
Co=1o 1 ol =2 |t 1 1|=|-1/3 2/3 —1/3
00 1| 3|11 1| |-13 -1/3 2/3

—_

It is apparent that the effect of multiplying a column vector by C), is to center all its entries at
the mean.

Let

-1 3
A= 0 6
1 9

Observed that A encodes the two feature vectors corresponding to X and Y in the dummy table.
Compute B = C3A. Explain in simple terms what is the effect that multiplying by C3 has on A.
Answer:
-1 -3
B=C3A=|0 0
1 3



(h) Compute

1
— _B'B.
Y=3

w is known as the “covariance” matrix. Discuss whether you see any connections between the
entries of w and the definitions of variance and covariance above.

1. 12 6] [2/3 2
“_333_3&14—{2 4'

It turns out that wy; = Var(X), wiz = we; = Cov(X,Y), and way = Var(Y).

Answer:

6. The length of a vector

denoted ||v||, can be defined as ||v]| = Vvtv

(a) Compute the lengths of v = (1,1,0) and w = (1, 2,0), respectively.
Answer: [jv]| = V12 +1%2 = V2, lw] = V12 +22 = V5.

(b) Find a scalar a € R such that ||aw| = 1. Do the same for w.
Answer: Notice that in general ||av|| = Va2|v|| = |a|||jv||. For v, a, = 1/|lv|| = 1/v/2 is one
possible solution. The same for w, oy, = 1/||w|| = 1/4/5 is one possible solution. Are there any
other solutions?

(c) Observe that given two vectors v, w € R™ then viw = wv. Can you explain why?
Answer: Both expressions yield the following scalar:

n
Z V;W;.
i=1

(d) We say that two vectors v, w € R™ are orthogonal whenever vt

w = 0. Given

1
v = 0 e R"
—2

find two linearly independent vectors w; and ws such that both are orthogonal to v.
Answer: In this exercise we are bound to find vectors w = (a, b, ¢) such that

a—2c=0.

We can provide any such vector with the constraint a = 2¢. One simple solution is to make
a = ¢ = 0 and choose any b # 0, like (0,1,0). Now, if we can given another non-zero solution
with b # 0 we would have produced two linearly independent vectors that fulfill the orthogonality
requirement. In fact, we could take b = 0 and a # 0, for instance, a = 2, then ¢ = 1. In summary,
we could just give wy = (2,0,1) and wy = (0,1, 0).

7. (Bonus Track) Given the binary data D = {(z;,v;) | s, v: € {0,1},i =1,..., N} we can fit a logistic
regression model by maximizing the following log-likelihood function:

N
L(a,b) = Z —(az; +b) + (az; + b)y; — log(1 + e~ (@i tb))
i=1
where a,b € R are the parameters of the model; in other words, solving the following optimization
problem: a,b = argmaxmbﬁ(a, b). In this exercise we are tackling this problem. For this purpose, recall
that the binary data D can also be specified as a contingency table:



0 1
0 | ngo | mo1
1| niyo | nnn

where each n;; € N represents the count of data points that meet each of the four possible configurations
for (x;,y;) in D: (0,0), (1,0), (0,1) and (1,1).

(a) Prove the following identity:

N )
6azl+b

oL
Da *in |:yl 1+eazi+b] .

i=1

(b) Prove the following identity:
N

oL eaith

(c) Write OL/da as a function of a, b and the n;;.
(d) Write 9L/0b as a function of ¢, b and the n;;.

(¢) Give an expression for the only critical point (&,b) of £ as a function of the Ngj.



