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Local approximation in
many variables

12.1 Higher-order partial derivatives

Just as in the single variable case, the higher-order partial
derivatives of 𝑓 convey nuances about the local shape of the
function about the point of interest that are missed by the
local a�ne approximation, suggesting that a better approxi-
mation could be attained if only we could incorporate also
the information conveyed by the second partial derivatives
of 𝑓 .

We say that a function 𝑓 : R𝑛 → R is continuously di�eren-
tiable at 𝑎 if it is di�erentiable and its partial derivatives are
continuous in a neighborhood of 𝑎. Analogously, we say that
𝑓 is 2 times continuously di�erentiable at 𝑎 if all of its partial
derivatives are continuously di�erentiable at 𝑎.

Theorem 6 (Schwarz). If 𝑓 is 2 times continuously di�eren-
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tiable, then its second order partial derivatives are symmetric,
i.e.

𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
(𝑎) = 𝜕2 𝑓

𝜕𝑥 𝑗 𝜕𝑥𝑖
(𝑎)

for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

We omit the proof of this theorem, although the interested
reader might be able to �nd it in any standard multivariable
di�erential calculus resource.

12.2 Quadratic approximation

Since using a�ne functions we have no more room left to
carry more information about the local shape of 𝑓 at 𝑎, we
must think of another type of function. Just as we did in the
single variable case, we will look into candidate functions
that are homogeneous polynomials of degree 2, namely, a
function of the form:

𝑄 (𝑥) = 𝑞0 + 𝐿(𝑥 − 𝑎) + 1
2
(𝑥 − 𝑎)𝑡𝐻 (𝑥 − 𝑎)

where 𝐿 ∈ R1×𝑛 and 𝐻 ∈ R𝑛×𝑛 is a symmetrix matrix, which
must satisfy the following requirements:

1. 𝑄 (𝑎) = 𝑓 (𝑎)

2. 𝜕𝑄

𝜕𝑥𝑖
(𝑎) = 𝜕𝑓

𝜕𝑥𝑖
(𝑎) for all 1 ≤ 𝑖 ≤ 𝑛

3. 𝜕2𝑄
𝜕𝑥𝑖𝜕𝑥 𝑗

(𝑎) = 𝜕2 𝑓
𝜕𝑥𝑖𝜕𝑥 𝑗

(𝑎) for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛

The requirements imply that 𝐿 = 𝐽 𝑓 (𝑎), the Jacobian matrix,
whilst 𝐻 = [ 𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
(𝑎)] is the matrix whose entries are the
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second-order partial derivatives, also known as the Hessian
matrix of 𝑓 at 𝑎. For the time being, we will denote the
Hessian matrix as 𝐻 𝑓 (𝑎).

Proposition 38 (Multivariable quadratic approximation). If
𝑓 is 2 times continuously di�erentiable at 𝑎, then

𝑄 (𝑥) = 𝑓 (𝑎) + 𝐽 𝑓 (𝑎) (𝑥 − 𝑎) + 1
2
(𝑥 − 𝑎)𝑡𝐻 𝑓 (𝑎) (𝑥 − 𝑎)

is a local quadratic approximation of 𝑓 at 𝑎 satisfying

𝑓 (𝑥) = 𝑄 (𝑥) + 𝔬(‖𝑥 − 𝑎‖2).

Note that if 𝑎 is critical point of 𝑓 , i.e. 𝐽 𝑓 (𝑎) = [0 . . . 0],
locally at 𝑎 the function 𝑓 can be approximated by

𝑓 (𝑎) + 1
2
(𝑥 − 𝑎)𝑡𝐻 𝑓 (𝑎) (𝑥 − 𝑎).

The second term corresponds to a class of polynomials known
as a quadratic forms. If we are able to classify the di�erent
quadratic forms that can arise, we will be able to classify 𝑎
as a critical point.

12.3 A�ne change of coordinates

Informally, we can think of using di�erent coordinate sys-
tems to represent the same points of R𝑛 in the hope that
the new representation can lead to an easier-to-understand
representation of e.g. some function or geometric shape.

We say that a function 𝜓 : R𝑛 → R𝑛 is an a�ne change of
coordinates of R𝑛 if it can be expressed as

𝜓 (𝑥) = 𝐴−1(𝑥 − 𝑎),
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for some invertible matrix 𝐴 ∈ R𝑛×𝑛 and 𝑎 ∈ R𝑛 . What does
such a coordinate change achieve? It is easy to see that such
a change takes the point 𝑎 to the origin. But not just this.
For example, suppose that𝜓 : R2 → R2 is the a�ne change
of coordinates

𝜓 (𝑥) = 𝐴−1(𝑥 − 𝑎),

with 𝐴 being the rotation of 𝜋/4 radians about the origin.
There are two ways of thinking about the change of perspec-
tive the change of coordinates𝜓 represents:

1. Move the coordinate axes. The new coordinates of
a point 𝑃 will correspond to new coordinate axes ob-
tained by �rst shifting the original coordinate until the
origin overlaps 𝑎, then rotating the axes 𝜋/4 radians
about the new origin.

2. Move the space. The new coordinates of a point 𝑃 will
be as if we obtained a new point 𝑃 ′ obtained by �rst
getting the vector 𝑎𝑃 ′, then rotating it −𝜋/4 radians
about the origin.

An a�ne change of coordinates 𝜓 (𝑥) = 𝐴−1(𝑥 − 𝑎) has al-
ways an inverse a�ne change of coordinates𝜓−1 that can be
expressed as

𝜓−1(𝑦) = 𝐴𝑦 + 𝑎.

12.4 Change of variables

Given some function 𝑓 : R𝑛 → Rwhich has some expression
in the original coordinate system, i.e. a way to compute the
output using a representation of the input in the original
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coordinate system, we nowwant to study how the expression
of the function changes if we provide the a representation
of the input in a new coordinate system. More speci�cally,
suppose that 𝑃 is some point in R𝑛 which in the original
coordinate system has coordinates 𝑥 , furthermore we know
how to compute the value of 𝑓 at 𝑃 using 𝑥 as an input, e.g.
evaluating some expression 𝐹 (𝑥). What would be the way to
compute 𝑓 if we provide 𝑃 represented in a new coordinate
system?

Suppose that the coordinates of 𝑃 in the new coordinate
system are

𝑦 = 𝜓 (𝑥) = 𝐴−1(𝑥 − 𝑎),
for some invertible matrix 𝐴 and 𝑎 ∈ R𝑛 . We know how to
compute the output of 𝑃 using the coordinates 𝑥 as 𝐹 (𝑥). But
we can provide, using 𝑦 as an input, the coordinates in the
original coordinate system as

𝑥 = 𝜓−1(𝑦) = 𝐴𝑦 + 𝑎.

The expression of 𝑓 if we represent the input in coordinates
of the new coordinate system is

𝐺 (𝑦) = 𝐹 (𝜓−1(𝑦)) = 𝐹 (𝐴𝑦 + 𝑎) .

We say to have obtained𝐺 from 𝐹 doing a change of variables.

12.5 Symmetric quadratic forms

Symmetric quadratic forms are (multivariable) polynomials
that can be expressed as

𝑄 (𝑥) = (𝑥 − 𝑎)𝑡𝐻 (𝑥 − 𝑎),
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where𝐻 is a symmetric matrix and 𝑎 ∈ R𝑛 . In this section we
will examine whether there is a change of variables that can
render a simple expression for computing and understanding
𝑄 .

Since 𝐻 is a symmetric matrix, there is an orthonormal basis
of eigenvectors of 𝐻 . If𝑈 is the orthogonal matrix that has
such vectors as columns, then there is an orthgonal matrix
𝑈 such that

𝑈 𝑡𝐻𝑈 = Λ = diag(𝜆1, . . . , 𝜆𝑛).

Can we use this observation to our advantage and �nd a
better representation of the quadratic form via change of
variables? If we use the following change of coordinates

𝑦 = 𝑈 𝑡 (𝑥 − 𝑎),

we can express the old coordinates using the new ones

𝑥 = 𝑈𝑦 + 𝑎,

thereby obtaining the following expression:

𝑄 (𝑦) = 𝑄 (𝑈𝑦 + 𝑎) = (𝑈𝑦)𝑡𝐻 (𝑈𝑦) =

= 𝑦𝑡𝑈 𝑡𝐻𝑈𝑦 = 𝑦𝑡Λ𝑦 =

𝑛∑︁
𝑖=1

𝜆𝑖𝑦
2
𝑖 .

Proposition 39. Given a symmetric quadratic form in 𝑛 vari-
ables

𝑄 (𝑥) = (𝑥 − 𝑎)𝑡𝐻 (𝑥 − 𝑎)
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there is an a�ne change of coordinates where the quadratic
form has the following expression:

𝑄 (𝑦) =
𝑛∑︁
𝑖=1

𝜆𝑖𝑦
2
𝑖 ,

with 𝜆𝑖 the eigenvalues of 𝐻 .

The quadratic form 𝑄 (𝑦) in the proposition is said to be in
canonical form.

12.6 Classi�cation of critical points

Given a (2 times continuously di�erentiable) function 𝑓 :
R𝑛 → R and a critical point 𝑎 of 𝑓 , the eigenvalues of the
Hessian matrix 𝐻 𝑓 (𝑎) give us a very valuable piece of infor-
mation to study the local shape of 𝑓 about the point 𝑎, as 𝑓
can be approximated as

𝑓 (𝑥) = 𝑓 (𝑎) + 1
2

𝑛∑︁
𝑖=1

𝜆𝑖𝑥
2
𝑖 + 𝔬(‖𝑥 ‖2)

with 𝜆𝑖 being the eigenvalues of 𝐻 𝑓 (𝑎), taking an appropri-
ate coordinate system. Using this expression alone we can
already derive a practical rule to classify the critical points
of 𝑓 .

Theorem 7 (Classi�cation of critical points). Let 𝑓 : R𝑛 → R
be a 2 times continuously di�erentiable function, 𝑎 be a critical
point of 𝑓 and 𝜆1, . . . , 𝜆𝑛 be the eigenvalues of 𝐻 𝑓 (𝑎), the
Hessian matrix of 𝑓 at 𝑎. Then the following rule holds:
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1. If 𝜆𝑖 > 0 for all 1 ≤ 𝑖 ≤ 𝑛, then 𝑎 is a local minimum.

2. If 𝜆𝑖 < 0 for all 1 ≤ 𝑖 ≤ 𝑛, then 𝑎 is a local maximum.

3. If 𝜆𝑖𝜆 𝑗 < 0 for some 𝑖 ≠ 𝑗 , then 𝑎 is a saddle point.

4. Otherwise, we cannot conclude anything.

Let’s see how we can prove the claims of the theorem. Using
the multivariable quadratic approximation within an appro-
priate coordinate system, about the critical point 𝑎, 𝑓 takes
the form:

𝑓 (𝑥) = 𝑓 (𝑎) + 1
2

𝑛∑︁
𝑖=1

𝜆𝑖𝑥
2
𝑖 + 𝔬(‖𝑥 ‖2)

If 𝜆𝑖 > 0 for all 1 ≤ 𝑖 ≤ 𝑛, we should prove that justify
that there is an neighborhood about 𝑎 where 𝑓 (𝑎) is the
minimum value that 𝑓 (𝑥) can take. This would mean that
𝑓 (𝑥) − 𝑓 (𝑎) > 0 for 𝑥 ≠ 𝑎 in the said neighborhood. Since

𝜓 (𝑥) = 𝑓 (𝑥) − 𝑓 (𝑎) = 1
2

𝑛∑︁
𝑖=1

𝜆𝑖𝑥
2
𝑖 + 𝔬(‖𝑥 ‖2),

dividing by ‖𝑥 ‖2 would not change the sign:

𝜓 (𝑥)
‖𝑥 ‖2 =

1
2‖𝑥 ‖2

𝑛∑︁
𝑖=1

𝜆𝑖𝑥
2
𝑖 +

𝔬(‖𝑥 ‖2)
‖𝑥 ‖2

But we know that the second term converges towards zero
as 𝑥 →→

0 , while the �rst term remains positive for any 𝑥 ,
since

1
‖𝑥 ‖2

𝑛∑︁
𝑖=1

𝜆𝑖𝑥
2
𝑖 ≥ min(𝜆1, . . . , 𝜆𝑛) > 0.
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This means that for values 𝑥 close enough to
→
0 ,

𝜓 (𝑥)
‖𝑥 ‖2 > 0.

Since the sign of 𝜓 (𝑥)/‖𝑥 ‖2 is equal to the sign of 𝜓 (𝑥) =
𝑓 (𝑥) − 𝑓 (𝑎) the conclusion follows. The other cases of the
theorem can be justi�ed in exactly the same way.

12.7 TL;DR

The higher-order derivatives of 𝑓 at 𝑎 help us understand-
ing the local behaviour of 𝑓 about 𝑎. If the functions are
smooth enough, we can provide a quadratic approximation
that encapsulates all the information up to the second-order
partial derivatives. At the critical points of 𝑓 this polyno-
mial takes a very gentle form to work with, a symmetric
quadratic form, that allows us to �nd a new coordinate sys-
tem in which the interpretation of the critical points is very
intuitive. Looking at 𝑓 with appropriate coordinates, we can
then go about classifying the critical points of 𝑓 into three
main categories: local maxima, local minima, saddle points.
However convenient, our classi�cation theorem is not com-
plete, in that there may be situations where we would not
be able to classify the critical points. Addressing this would
involve studying higher-order multivariable Taylor expan-
sions, just as we did for single variable functions. But this, it
will be another story.
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