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Local approximation in
many variables

12.1 Higher-order partial derivatives

Just as in the single variable case, the higher-order partial
derivatives of 𝑓 convey nuances about the local shape of the
function about the point of interest that are missed by the
local ane approximation, suggesting that a better approxi-
mation could be attained if only we could incorporate also
the information conveyed by the second partial derivatives
of 𝑓 .

We say that a function 𝑓 : R𝑛 → R is continuously dieren-
tiable at 𝑎 if it is dierentiable and its partial derivatives are
continuous in a neighborhood of 𝑎. Analogously, we say that
𝑓 is 2 times continuously dierentiable at 𝑎 if all of its partial
derivatives are continuously dierentiable at 𝑎.

Theorem 6 (Schwarz). If 𝑓 is 2 times continuously dieren-
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tiable, then its second order partial derivatives are symmetric,
i.e.

𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
(𝑎) = 𝜕2 𝑓

𝜕𝑥 𝑗 𝜕𝑥𝑖
(𝑎)

for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

We omit the proof of this theorem, although the interested
reader might be able to nd it in any standard multivariable
dierential calculus resource.

12.2 Quadratic approximation

Since using ane functions we have no more room left to
carry more information about the local shape of 𝑓 at 𝑎, we
must think of another type of function. Just as we did in the
single variable case, we will look into candidate functions
that are homogeneous polynomials of degree 2, namely, a
function of the form:

𝑄 (𝑥) = 𝑞0 + 𝐿(𝑥 − 𝑎) + 1
2
(𝑥 − 𝑎)𝑡𝐻 (𝑥 − 𝑎)

where 𝐿 ∈ R1×𝑛 and 𝐻 ∈ R𝑛×𝑛 is a symmetrix matrix, which
must satisfy the following requirements:

1. 𝑄 (𝑎) = 𝑓 (𝑎)

2. 𝜕𝑄

𝜕𝑥𝑖
(𝑎) = 𝜕𝑓

𝜕𝑥𝑖
(𝑎) for all 1 ≤ 𝑖 ≤ 𝑛

3. 𝜕2𝑄
𝜕𝑥𝑖𝜕𝑥 𝑗

(𝑎) = 𝜕2 𝑓
𝜕𝑥𝑖𝜕𝑥 𝑗

(𝑎) for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛

The requirements imply that 𝐿 = 𝐽 𝑓 (𝑎), the Jacobian matrix,
whilst 𝐻 = [ 𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
(𝑎)] is the matrix whose entries are the
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second-order partial derivatives, also known as the Hessian
matrix of 𝑓 at 𝑎. For the time being, we will denote the
Hessian matrix as 𝐻 𝑓 (𝑎).

Proposition 38 (Multivariable quadratic approximation). If
𝑓 is 2 times continuously dierentiable at 𝑎, then

𝑄 (𝑥) = 𝑓 (𝑎) + 𝐽 𝑓 (𝑎) (𝑥 − 𝑎) + 1
2
(𝑥 − 𝑎)𝑡𝐻 𝑓 (𝑎) (𝑥 − 𝑎)

is a local quadratic approximation of 𝑓 at 𝑎 satisfying

𝑓 (𝑥) = 𝑄 (𝑥) + 𝔬(‖𝑥 − 𝑎‖2).

Note that if 𝑎 is critical point of 𝑓 , i.e. 𝐽 𝑓 (𝑎) = [0 . . . 0],
locally at 𝑎 the function 𝑓 can be approximated by

𝑓 (𝑎) + 1
2
(𝑥 − 𝑎)𝑡𝐻 𝑓 (𝑎) (𝑥 − 𝑎).

The second term corresponds to a class of polynomials known
as a quadratic forms. If we are able to classify the dierent
quadratic forms that can arise, we will be able to classify 𝑎
as a critical point.

12.3 Ane change of coordinates

Informally, we can think of using dierent coordinate sys-
tems to represent the same points of R𝑛 in the hope that
the new representation can lead to an easier-to-understand
representation of e.g. some function or geometric shape.

We say that a function 𝜓 : R𝑛 → R𝑛 is an ane change of
coordinates of R𝑛 if it can be expressed as

𝜓 (𝑥) = 𝐴−1(𝑥 − 𝑎),
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for some invertible matrix 𝐴 ∈ R𝑛×𝑛 and 𝑎 ∈ R𝑛 . What does
such a coordinate change achieve? It is easy to see that such
a change takes the point 𝑎 to the origin. But not just this.
For example, suppose that𝜓 : R2 → R2 is the ane change
of coordinates

𝜓 (𝑥) = 𝐴−1(𝑥 − 𝑎),

with 𝐴 being the rotation of 𝜋/4 radians about the origin.
There are two ways of thinking about the change of perspec-
tive the change of coordinates𝜓 represents:

1. Move the coordinate axes. The new coordinates of
a point 𝑃 will correspond to new coordinate axes ob-
tained by rst shifting the original coordinate until the
origin overlaps 𝑎, then rotating the axes 𝜋/4 radians
about the new origin.

2. Move the space. The new coordinates of a point 𝑃 will
be as if we obtained a new point 𝑃 ′ obtained by rst
getting the vector 𝑎𝑃 ′, then rotating it −𝜋/4 radians
about the origin.

An ane change of coordinates 𝜓 (𝑥) = 𝐴−1(𝑥 − 𝑎) has al-
ways an inverse ane change of coordinates𝜓−1 that can be
expressed as

𝜓−1(𝑦) = 𝐴𝑦 + 𝑎.

12.4 Change of variables

Given some function 𝑓 : R𝑛 → Rwhich has some expression
in the original coordinate system, i.e. a way to compute the
output using a representation of the input in the original
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coordinate system, we nowwant to study how the expression
of the function changes if we provide the a representation
of the input in a new coordinate system. More specically,
suppose that 𝑃 is some point in R𝑛 which in the original
coordinate system has coordinates 𝑥 , furthermore we know
how to compute the value of 𝑓 at 𝑃 using 𝑥 as an input, e.g.
evaluating some expression 𝐹 (𝑥). What would be the way to
compute 𝑓 if we provide 𝑃 represented in a new coordinate
system?

Suppose that the coordinates of 𝑃 in the new coordinate
system are

𝑦 = 𝜓 (𝑥) = 𝐴−1(𝑥 − 𝑎),
for some invertible matrix 𝐴 and 𝑎 ∈ R𝑛 . We know how to
compute the output of 𝑃 using the coordinates 𝑥 as 𝐹 (𝑥). But
we can provide, using 𝑦 as an input, the coordinates in the
original coordinate system as

𝑥 = 𝜓−1(𝑦) = 𝐴𝑦 + 𝑎.

The expression of 𝑓 if we represent the input in coordinates
of the new coordinate system is

𝐺 (𝑦) = 𝐹 (𝜓−1(𝑦)) = 𝐹 (𝐴𝑦 + 𝑎) .

We say to have obtained𝐺 from 𝐹 doing a change of variables.

12.5 Symmetric quadratic forms

Symmetric quadratic forms are (multivariable) polynomials
that can be expressed as

𝑄 (𝑥) = (𝑥 − 𝑎)𝑡𝐻 (𝑥 − 𝑎),
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where𝐻 is a symmetric matrix and 𝑎 ∈ R𝑛 . In this section we
will examine whether there is a change of variables that can
render a simple expression for computing and understanding
𝑄 .

Since 𝐻 is a symmetric matrix, there is an orthonormal basis
of eigenvectors of 𝐻 . If𝑈 is the orthogonal matrix that has
such vectors as columns, then there is an orthgonal matrix
𝑈 such that

𝑈 𝑡𝐻𝑈 = Λ = diag(𝜆1, . . . , 𝜆𝑛).

Can we use this observation to our advantage and nd a
better representation of the quadratic form via change of
variables? If we use the following change of coordinates

𝑦 = 𝑈 𝑡 (𝑥 − 𝑎),

we can express the old coordinates using the new ones

𝑥 = 𝑈𝑦 + 𝑎,

thereby obtaining the following expression:

𝑄 (𝑦) = 𝑄 (𝑈𝑦 + 𝑎) = (𝑈𝑦)𝑡𝐻 (𝑈𝑦) =

= 𝑦𝑡𝑈 𝑡𝐻𝑈𝑦 = 𝑦𝑡Λ𝑦 =

𝑛∑︁
𝑖=1

𝜆𝑖𝑦
2
𝑖 .

Proposition 39. Given a symmetric quadratic form in 𝑛 vari-
ables

𝑄 (𝑥) = (𝑥 − 𝑎)𝑡𝐻 (𝑥 − 𝑎)
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there is an ane change of coordinates where the quadratic
form has the following expression:

𝑄 (𝑦) =
𝑛∑︁
𝑖=1

𝜆𝑖𝑦
2
𝑖 ,

with 𝜆𝑖 the eigenvalues of 𝐻 .

The quadratic form 𝑄 (𝑦) in the proposition is said to be in
canonical form.

12.6 Classication of critical points

Given a (2 times continuously dierentiable) function 𝑓 :
R𝑛 → R and a critical point 𝑎 of 𝑓 , the eigenvalues of the
Hessian matrix 𝐻 𝑓 (𝑎) give us a very valuable piece of infor-
mation to study the local shape of 𝑓 about the point 𝑎, as 𝑓
can be approximated as

𝑓 (𝑥) = 𝑓 (𝑎) + 1
2

𝑛∑︁
𝑖=1

𝜆𝑖𝑥
2
𝑖 + 𝔬(‖𝑥 ‖2)

with 𝜆𝑖 being the eigenvalues of 𝐻 𝑓 (𝑎), taking an appropri-
ate coordinate system. Using this expression alone we can
already derive a practical rule to classify the critical points
of 𝑓 .

Theorem 7 (Classication of critical points). Let 𝑓 : R𝑛 → R
be a 2 times continuously dierentiable function, 𝑎 be a critical
point of 𝑓 and 𝜆1, . . . , 𝜆𝑛 be the eigenvalues of 𝐻 𝑓 (𝑎), the
Hessian matrix of 𝑓 at 𝑎. Then the following rule holds:
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1. If 𝜆𝑖 > 0 for all 1 ≤ 𝑖 ≤ 𝑛, then 𝑎 is a local minimum.

2. If 𝜆𝑖 < 0 for all 1 ≤ 𝑖 ≤ 𝑛, then 𝑎 is a local maximum.

3. If 𝜆𝑖𝜆 𝑗 < 0 for some 𝑖 ≠ 𝑗 , then 𝑎 is a saddle point.

4. Otherwise, we cannot conclude anything.

Let’s see how we can prove the claims of the theorem. Using
the multivariable quadratic approximation within an appro-
priate coordinate system, about the critical point 𝑎, 𝑓 takes
the form:

𝑓 (𝑥) = 𝑓 (𝑎) + 1
2

𝑛∑︁
𝑖=1

𝜆𝑖𝑥
2
𝑖 + 𝔬(‖𝑥 ‖2)

If 𝜆𝑖 > 0 for all 1 ≤ 𝑖 ≤ 𝑛, we should prove that justify
that there is an neighborhood about 𝑎 where 𝑓 (𝑎) is the
minimum value that 𝑓 (𝑥) can take. This would mean that
𝑓 (𝑥) − 𝑓 (𝑎) > 0 for 𝑥 ≠ 𝑎 in the said neighborhood. Since

𝜓 (𝑥) = 𝑓 (𝑥) − 𝑓 (𝑎) = 1
2

𝑛∑︁
𝑖=1

𝜆𝑖𝑥
2
𝑖 + 𝔬(‖𝑥 ‖2),

dividing by ‖𝑥 ‖2 would not change the sign:

𝜓 (𝑥)
‖𝑥 ‖2 =

1
2‖𝑥 ‖2

𝑛∑︁
𝑖=1

𝜆𝑖𝑥
2
𝑖 +

𝔬(‖𝑥 ‖2)
‖𝑥 ‖2

But we know that the second term converges towards zero
as 𝑥 →→

0 , while the rst term remains positive for any 𝑥 ,
since

1
‖𝑥 ‖2

𝑛∑︁
𝑖=1

𝜆𝑖𝑥
2
𝑖 ≥ min(𝜆1, . . . , 𝜆𝑛) > 0.
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This means that for values 𝑥 close enough to
→
0 ,

𝜓 (𝑥)
‖𝑥 ‖2 > 0.

Since the sign of 𝜓 (𝑥)/‖𝑥 ‖2 is equal to the sign of 𝜓 (𝑥) =
𝑓 (𝑥) − 𝑓 (𝑎) the conclusion follows. The other cases of the
theorem can be justied in exactly the same way.

12.7 TL;DR

The higher-order derivatives of 𝑓 at 𝑎 help us understand-
ing the local behaviour of 𝑓 about 𝑎. If the functions are
smooth enough, we can provide a quadratic approximation
that encapsulates all the information up to the second-order
partial derivatives. At the critical points of 𝑓 this polyno-
mial takes a very gentle form to work with, a symmetric
quadratic form, that allows us to nd a new coordinate sys-
tem in which the interpretation of the critical points is very
intuitive. Looking at 𝑓 with appropriate coordinates, we can
then go about classifying the critical points of 𝑓 into three
main categories: local maxima, local minima, saddle points.
However convenient, our classication theorem is not com-
plete, in that there may be situations where we would not
be able to classify the critical points. Addressing this would
involve studying higher-order multivariable Taylor expan-
sions, just as we did for single variable functions. But this, it
will be another story.
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