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The differential

11.1 Multivariable functions

In this chapter we will study multivariable functions 𝑓 :
R𝑛 → R, i.e. functions taking inputs in R𝑛 and returning
outputs in R. We may think of the inputs in R𝑛 as points or
vectors of R𝑛 .

Many concepts seen for single variable functions translate
with just very minor adjustments into the multivariable con-
text. Let’s �rst review the concepts of limit and continuity
in this new context.

We say that a function 𝑓 : R𝑛 → R has limit 𝐿 when 𝑥

tends to 𝑎 if for any 𝜖 > 0 there is some 𝛿 > 0 such that
0 < ‖x − a‖ < 𝛿 implies that |𝑓 (𝑥) − 𝑓 (𝑎) | < 𝜖 , denoted

lim
𝑥→𝑎

𝑓 (𝑥) = 𝐿.
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A function 𝑓 will be continuous at 𝑎 if

lim
𝑥→𝑎

𝑓 (𝑥) = 𝑓 (𝑎).

As with the single variable functions, the domain of 𝑓 , de-
noted Dom(𝑓 ), is the set of input values for which the func-
tion can return an output.

Unlike with single variable functions we are little more con-
strained to represent functions graphically, although the
abstract concept of graph remains the same. Formally, the
graph of a function 𝑓 : R𝑛 → Rwill be given by the following
set of points:

Γ(𝑓 ) = {(𝑥1, . . . , 𝑥𝑛, 𝑦) ∈ R𝑛+1 | 𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑦}.

In the case of functions 𝑓 : R2 → Rwe can think of Γ(𝑓 ) as a
surface and in general, for functions of the form 𝑓 : R𝑛 → R,
we can think of Γ(𝑓 ) as a hypersurface embedded in R𝑛+1.

We de�ne the level set of the function 𝑓 corresponding to
level 𝑐 ∈ 𝑅, denoted 𝑓 −1(𝑐) as the following set of input
points:

𝑓 −1(𝑐) = {𝑥 ∈ R𝑛 | 𝑓 (𝑥) = 𝑐}.

In the case of functions 𝑓 : R2 → R we can think of the level
sets as curves as a surface, although in some cases the set
will not be a proper curve. For example, for the function
𝑓 (𝑥,𝑦) = 𝑥2 + 𝑦2 we can describe three types of level sets:

1. If 𝑐 < 0 there is no point (𝑥,𝑦) ∈ R2 in the domain such
that 𝑓 (𝑥,𝑦) = 𝑐 , consequently 𝑓 −1(𝑐) is the empty set.
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2. If 𝑐 = 0 then 𝑓 −1(𝑐) is just one point, namely {(0, 0)}.

3. If 𝑐 > 0 then 𝑓 −1(𝑐) is the circumference of center
(0, 0) and radius

√
𝑐 .

11.2 The di�erential

When trying to translate the concept of local trend, a.k.a.
derivative, to the multivariable setting, we encounter an im-
portant di�erence with the single variable setting: a function
can exhibit many di�erent local trends depending on the
direction by which we approach our point of interest.

11.2.1 Slicing multivariable functions

As a �rst instructive example, let’s analyse of the local be-
haviour of the function 𝑓 (𝑥,𝑦) = 𝑥𝑦 at the point 𝑎 = (1, 2).

First imagine that we approach 𝑎 following a trajectory that
is parallel to the 𝑥-axis, in other words, we take inputs of the
form (𝑡, 2) setting the 𝑦-component of 𝑎 �xed. What is the
trend of 𝑓 restricted to this line? It must be the same trend
given by the single variable function 𝜙 (𝑡) = 𝑓 (𝑡, 2) = 2𝑡 ,
namely, 𝜙 ′(1) = 2.

Now imagine that we approach 𝑎 following a trajectory that
is parallel to the 𝑦-axis, in other words, we take inputs of the
form (1, 𝑠) setting the 𝑥-component of 𝑎 �xed. What is the
trend of 𝑓 restricted to this new line? It must be the same
trend given by the single variable function𝜓 (𝑠) = 𝑓 (1, 𝑠) = 𝑠 ,
namely, 𝜓 ′(2) = 1. The local trend seems to be a little bit
more complex than it was for the single variable case.
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11.2.2 Partial derivatives

We can de�ne a �exible way of computing the derivative
of 𝑓 that uses as additional input information the direction
we follow to approach 𝑎. The directional derivate of 𝑓 at 𝑎
following the direction of a unitary vector 𝑣 is de�ned as the
following limit expression:

𝜕𝑓

𝜕𝑣
(𝑎) = lim

ℎ→0

𝑓 (𝑎 + ℎ𝑣) − 𝑓 (𝑎)
ℎ

.

When 𝑣 = 𝑒𝑖 , the 𝑖-th vector of the canonical basis, the
directional derivative of 𝑓 at 𝑎 following the direction of 𝑒𝑖 is
known as the 𝑖-th partial derivative of 𝑓 at 𝑎 and it is denoted
𝜕𝑓

𝜕𝑥𝑖
(𝑎).

Using the limit expression we can observe the following
relationship,

𝑓 (𝑎 + ℎ𝑒𝑖) = 𝑓 (𝑎) + 𝜕𝑓

𝜕𝑥𝑖
(𝑎)ℎ + 𝔬(ℎ),

and 𝜕𝑓

𝜕𝑥𝑖
(𝑎) is the only value that ful�lls this equation.

11.2.3 Di�erentiable functions

We have seen that in the multivariable case we can compute
many local trends of 𝑓 at 𝑎, each attached to a possible di-
rection from which we can approach 𝑎. When working with
multivariable functions, we will look for classes of functions
that are easy to study and understand but they are not so
restrictive. The next de�nition is motivated by the require-
ment that the local trend values are not completely arbitrary,
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but they keep instead some coherence in a sense that will be
made precise soon.

We say that the function 𝑓 : R𝑛 → R is di�erentiable at 𝑎 if
there is a linear transformation 𝐿 : R𝑛 → R, known as the
di�erential, such that

lim
ℎ→→

0

𝑓 (𝑎 + ℎ) − 𝑓 (𝑎) − 𝐿(ℎ)
‖ℎ‖ = 0,

or equivalently,

𝑓 (𝑥) = 𝑓 (𝑎) + 𝐿(𝑥 − 𝑎) + 𝔬(‖𝑥 − 𝑎‖) .

If 𝑓 is di�erentiable the linear transformation 𝐿 is uniquely
determined (why?). What is the matrix of the di�erential
𝐿? Observe that the limit above must hold no matter which
path the vector ℎ takes towards the zero vector

→
0 . If we now

take 𝑥 = 𝑎 + ℎ𝑒𝑖 we can see that

𝑓 (𝑥) = 𝑓 (𝑎) + 𝐿(ℎ𝑒𝑖) + 𝔬(ℎ) = 𝑓 (𝑎) + 𝐿𝑖ℎ + 𝔬(ℎ),

where 𝐿𝑖 denotes the 𝑖-th element of the row matrix 𝐿. But
in view of the discussion in Section 11.2.2 we can conclude
that 𝐿𝑖 =

𝜕𝑓

𝜕𝑥𝑖
(𝑎).

The matrix of the di�erential

𝐽 𝑓 (𝑎) = [ 𝜕𝑓
𝜕𝑥1

(𝑎) . . . 𝜕𝑓
𝜕𝑥𝑛

(𝑎)] ∈ R1×𝑛

is known as the Jacobian matrix of 𝑓 at 𝑎 and de�nes a
linear transformation R𝑛 → R that attaches to each possible
direction a value for the local trend of 𝑓 at 𝑎.
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Proposition 36. If 𝑓 is di�erentiable at 𝑎, we can compute
the directional derivative of 𝑓 at 𝑎 following the direction of a
unitary vector 𝑣 as follows

𝜕𝑓

𝜕𝑣
(𝑎) =

𝑛∑︁
𝑖=1

𝜕𝑓

𝜕𝑥𝑖
(𝑎)𝑣𝑖 = 𝐽 𝑓 (𝑎)𝑣

11.2.4 Local a�ne approximation

The discussion above already implies that for any di�eren-
tiable function 𝑓 and point 𝑎 there is a multivariable local
a�ne approximation that takes the following form:

𝐺 (𝑥) = 𝑓 (𝑎) + 𝐽 𝑓 (𝑎) (𝑥 − 𝑎)

We can readily verify that the function𝐺 satis�es the follow-
ing conditions:

1. 𝐺 (𝑎) = 𝑓 (𝑎)

2. 𝜕𝐺
𝜕𝑥𝑖

(𝑎) = 𝜕𝑓

𝜕𝑥𝑖
(𝑎) for all 1 ≤ 𝑖 ≤ 𝑛

Also following the discussion in the previous section, the
a�ne approximation satis�es a somewhat modi�ed approx-
imation condition compared to the single variable case, i.e.
the approximation error is 𝔬(‖𝑥−𝑎‖). We can state the result
in the following proposition:

Proposition 37. If 𝑓 is di�erentiable at 𝑎, then

𝑓 (𝑥) = 𝑓 (𝑎) + 𝐽 𝑓 (𝑎) (𝑥 − 𝑎) + 𝔬(‖𝑥 − 𝑎‖).
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11.3 The gradient vector

Among all the possible directions 𝑣 that we can use to com-
pute the directional derivative 𝜕𝑓

𝜕𝑣
(𝑎), which unitary vector 𝑣

would render the highest possible value? In other words, in
which direction from the point 𝑎 the growth of 𝑓 is steepest?

As we already know that

𝜕𝑓

𝜕𝑣
(𝑎) = 𝐽 𝑓 (𝑎)𝑣,

the problem admits an easy answer. Since 𝐽 𝑓 (𝑎) is a row
matrix, we can think of 𝐽 𝑓 (𝑎)𝑣 as the following dot product:

∇𝑓 (𝑎) · 𝑣,

where

∇𝑓 (𝑎) =


𝜕𝑓

𝜕𝑥1
(𝑎)
...

𝜕𝑓

𝜕𝑥𝑛
(𝑎)

 .
Assuming that 𝐽 𝑓 (𝑎) is not zero (what would happen if 𝐽 𝑓 (𝑎)
is a matrix with zeros?), since∇𝑓 (𝑎) ·𝑣 = ‖∇𝑓 (𝑎)‖‖𝑣 ‖ cos(𝜃 ),
with 𝜃 being the angle formed by the two vectors, the maxi-
mum value would be attained by

𝑣 =
∇𝑓 (𝑎)
‖∇𝑓 (𝑎)‖ ,

a unitary vector that points in the same direction as ∇𝑓 (𝑎).
The vector ∇𝑓 (𝑎) is known as the gradient of 𝑓 at 𝑎.

Another quiz: among all the possible directions 𝑣 that we
can use to compute the directional derivative 𝜕𝑓

𝜕𝑣
(𝑎), which
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unitary vectors 𝑣 would render a null local trend? Following
the same rationale, the solution is the set of unitary vectors
that are orthogonal to ∇𝑓 (𝑎), i.e. the unitary vectors of
the vector subspace ∇𝑓 (𝑎)⊥. This remark corroborates the
intuition that the direction of steepest ascent, given by the
gradient vector, must be perpendicular to the level curves in
the case of functions 𝑓 : R2 → R.

11.4 TL;DR

The derivative and the more general concept of di�erential
are just convenient linear transformations to describe the
local behaviour of functions about points of interest: those
functions that admit local a�ne approximation are known as
di�erentiable functions. The di�erential is the linear transfor-
mation that provides the local trend for any possible direction
to approach the point of interest, the matrix of the di�erential
is known as the Jacobian matrix and its entries are the partial
derivatives. The gradient vector has also the partial deriva-
tives as its entries, although it has a di�erent interpretation:
it signals the direction of local steepest ascent.
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