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Local approximation in
one variable

10.1 The derivative as a function

When considering a dierentiable function, say 𝑓 , by deni-
tion we can compute the derivative of 𝑓 at each point of its
domain. We can then think of a function that takes as input
some value 𝑥 and returns the derivative of 𝑓 at 𝑥 . We denote
this function 𝑓 ′.

An important consequence of this way of thinking is that we
can iterate this process to yield the second 𝑓 (2) , third 𝑓 (3)

and so on derivatives of 𝑓 . In general, we will denote the
𝑛-th derivative of 𝑓 as 𝑓 (𝑛) .

There are a number of examples where a legitimate dier-
entiable function 𝑓 yields a derivative function 𝑓 ′ that is
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itself non-dierentiable or even non-continuous. Just for
illustration, the following function

𝑉 (𝑥) =
{
𝑥2 sin 1/𝑥 if 𝑥 ≠ 0
0 if 𝑥 = 0

known as Volterra’s function, is dierentiable everywhere,
but it is discontinuous at a bunch of points known as the
Smith-Volterra-Cantor set.

For the purpose of this course, we will consider only a class
of functions known as smooth which admit as many higher-
order derivatives as needed in the domain of the function.

10.2 Local quadratic approximation

The importance of the higher-order derivatives of 𝑓 is that
they convey more nuances about the local shape of the func-
tion about the point of interest.

Let’s consider the second derivative of 𝑓 at a point 𝑎, say
𝑓 (2) (𝑎). What is it telling us? This is the local growth
rate of the function 𝑓 ′ at 𝑎, i.e. at what rate is the local
growth rate of 𝑓 changing about 𝑎. The situation in a point
𝑝 where 𝑓 (2) (𝑝) > 0 can look very dierent compared with
the situation in another point 𝑞 where 𝑓 (2) (𝑞) < 0, even if
𝑓 ′(𝑝) = 𝑓 ′(𝑞).

In the rst case, with 𝑓 (2) (𝑝) > 0, we may encounter a
situation like the following one:
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Whilst in the second case, with 𝑓 (2) (𝑞) < 0, we may en-
counter a completely dierent situation, even if both func-
tions have derivative equal to zero at the point of interest:

These examples suggest that a better approximation could
be attained if only we could incorporate also the information
conveyed by the second derivative of 𝑓 . Using an ane func-
tions we have no more room left to carry more information
about the local shape of 𝑓 at a certain point 𝑎.

We must use another type of function that gives us some
more exibility to satisfy the additional requirement that
the second derivative of the approximation must be equal
to the second derivative of 𝑓 . In other words, we look for
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an as simple function as possible, say 𝑄 (𝑥) that saties the
following three requirements:

1. 𝑄 (𝑎) = 𝑓 (𝑎)

2. 𝑄 ′(𝑎) = 𝑓 ′(𝑎)

3. 𝑄 (2) (𝑎) = 𝑓 (2) (𝑎)

Can we gure out a solution to the problem of the following
form?

𝑄 (𝑥) = 𝑘0 + 𝑘1(𝑥 − 𝑎) + 𝑘2(𝑥 − 𝑎)2

Using the rst requirement we get 𝑘0 = 𝑓 (𝑎). The derivative
of𝑄 (𝑥) is𝑄 ′(𝑥) = 𝑘1+2𝑘2(𝑥−𝑎), therefore using the second
requirement we conclude that 𝑘1 = 𝑓 ′(𝑎). Finally, we can see
that the second derivative of𝑄 (𝑥) is𝑄 (2) (𝑎) = 2𝑘2, therefore
using the third requirement we conclude that 𝑘2 = 1

2 𝑓
(2) (𝑎).

Our candidate function

𝑄 (𝑥) = 𝑓 (𝑎) + 𝑓 ′(𝑎) (𝑥 − 𝑎) + 1/2𝑓 (2) (𝑎) (𝑥 − 𝑎)2

is very much like the ane approximation, albeit with an
additional term of degree 2. Does this additional quadratic
term make the approximation better than the ane approx-
imation in any way? The answer is yes, in a sense that is
made precise in the following proposition, which we leave
without proof:

Proposition 35. If 𝑓 is a smooth function at 𝑎, then

𝑓 (𝑥) = 𝑓 (𝑎) + 𝑓 ′(𝑎) (𝑥 − 𝑎) + 1
2
𝑓 (2) (𝑎) (𝑥 − 𝑎)2 + 𝔬((𝑥 − 𝑎)2)
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In other words, the approximation error of the quadratic ap-
proximation is guaranteed to converge towards zero locally
at 𝑎 faster than (𝑥 − 𝑎)2.

10.3 Taylor’s approximation

There is no reason why we cannot extend the argument
that made possible the quadratic approximation with higher-
order derivatives of 𝑓 . Intuitively, the more higher-order
derivatives we know, the more nuanced an approximation
we can build. So we can extend our search to higher-degree
polynomials. Concretely, if we know all the derivatives of 𝑓
at 𝑎 up to order 𝑛, can we nd a polynomial function 𝑇 (𝑥)
that satisies the following requirements?

1. 𝑇 (𝑎) = 𝑓 (𝑎)

2. 𝑇 ′(𝑎) = 𝑓 ′(𝑎)

3. 𝑇 (2) (𝑎) = 𝑓 (2) (𝑎)

...

𝑛 + 1. 𝑇 (𝑛) (𝑎) = 𝑓 (𝑛) (𝑎)

Repeating the same argument as before in an iterative way,
we can see that our candidate polynomial is uniquely deter-
mined by the list of requirements:

𝑇 (𝑥) =
𝑛∑︁

𝑘=0

1
𝑘!

𝑓 (𝑘) (𝑎) (𝑥 − 𝑎)𝑘
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where we adopt the convention that 𝑓 (0) (𝑎) = 𝑓 (𝑎) and that
0! = 1.

In which sense do these additional higher-order terms make
the approximation better than the lower degree ones? The
answer is provided by the following result, which we leave
without proof:

Theorem 4 (Taylor’s theorem). If 𝑓 is a smooth function at
𝑎, then

𝑓 (𝑥) =
𝑛∑︁

𝑘=0

1
𝑘!

𝑓 (𝑘) (𝑎) (𝑥 − 𝑎)𝑘 + 𝔬((𝑥 − 𝑎)𝑛)

In other words, the approximation error of the Taylor poly-
nomial of degree 𝑛 is guaranteed to converge towards zero
locally at 𝑎 faster than (𝑥 − 𝑎)𝑛 .

10.4 Finding local extrema

Adierentiable function 𝑓 is said to have a critical point in𝑎 if
𝑓 ′(𝑎) = 0. The collection of critical points of a dierentiable
function are important, because they are the only candidates
where the function can reach a maximum or a minimum. In
general, using the approximation results above described, we
can classify all the critical points in either of three categories:
maxima, minima and inection points.

Theorem 5 (Classication of critical points). Let 𝑎 be a crit-
ical point of a smooth function 𝑓 . Let

𝑛 = min{𝑛 ≥ 2 | 𝑓 (𝑛) (𝑎) ≠ 0}.
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The following statements hold:

• If 𝑛 is even and 𝑓 (𝑛) (𝑎) < 0, then 𝑎 is a local maximum.

• If 𝑛 is even and 𝑓 (𝑛) (𝑎) > 0, then 𝑎 is a local minimum.

• If 𝑛 is odd, then 𝑎 is an inection point.

An inection point can be dened as a critical point that
is neither a local maximum nor a local minimum, i.e. in
any interval about 𝑎 we can nd points 𝑝 and 𝑞 such that
𝑓 (𝑝) > 𝑓 (𝑎) > 𝑓 (𝑞).

Let’s see how we can prove the claims of the theorem. Using
Taylor’s theorem in the situation of the theorem, 𝑓 takes the
following form:

𝑓 (𝑥) = 𝑓 (𝑎) + 1
𝑛!

𝑓 (𝑛) (𝑎) (𝑥 − 𝑎)𝑛 + 𝔬((𝑥 − 𝑎)𝑛)

If 𝑛 is even and 𝑓 (𝑛) (𝑎) < 0, we should justify that there is
an interval about 𝑎 where 𝑓 (𝑎) is the maximum value that
𝑓 (𝑥) takes. This would mean that 𝑓 (𝑥) − 𝑓 (𝑎) < 0 for 𝑥 ≠ 𝑎

in the said interval. But using the expression of 𝑓 we can
prove that, indeed. Since

𝜓 (𝑥) = 𝑓 (𝑥) − 𝑓 (𝑎) = 1
𝑛!

𝑓 (𝑛) (𝑎) (𝑥 − 𝑎)𝑛 + 𝔬((𝑥 − 𝑎)𝑛)

we are bound to prove that𝜓 (𝑥) < 0 in some interval (how-
ever small) about 𝑎. Since 𝑛 is even, (𝑥 − 𝑎)𝑛 > 0 for 𝑥 ≠ 𝑎,
so dividing by (𝑥 − 𝑎)𝑛 would not change the sign:

𝜓 (𝑥)
(𝑥 − 𝑎)𝑛 =

1
𝑛!

𝑓 (𝑛) (𝑎) + 𝔬((𝑥 − 𝑎)𝑛)
(𝑥 − 𝑎)𝑛
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But we know that the second term converges towards zero
as we get closer to 𝑎

lim
𝑥→𝑎

𝔬((𝑥 − 𝑎)𝑛)
(𝑥 − 𝑎)𝑛 = 0

meaning that for values 𝑥 close enough to 𝑎, we must have

𝜓 (𝑥)
(𝑥 − 𝑎)𝑛 < 0,

but since the sign of𝜓 (𝑥)/(𝑥 −𝑎)𝑛 must be equal to the sign
of𝜓 (𝑥) = 𝑓 (𝑥) − 𝑓 (𝑎) the conclusion follows. The other two
cases of the theorem can be justied in exactly the same way.

10.5 TL;DR

The more higher-derivatives of 𝑓 at 𝑎 we know, the more nu-
anced our understanding of the local behaviour of 𝑓 about 𝑎.
For smooth functions Taylor’s polynomial is the key mathe-
matical object that assembles all the higher-order derivatives
in a polynomial function to render local approximations of
𝑓 , the better the higher the degree of the polynomial. With
this polynomial we thus generalize the idea of local ane
approximation. With these results at hand, we can then go
about studying the critical points of 𝑓 into three possible
categories: maxima, minima and inection points.
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