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Local approximation in
one variable

10.1 The derivative as a function

When considering a di�erentiable function, say 𝑓 , by de�ni-
tion we can compute the derivative of 𝑓 at each point of its
domain. We can then think of a function that takes as input
some value 𝑥 and returns the derivative of 𝑓 at 𝑥 . We denote
this function 𝑓 ′.

An important consequence of this way of thinking is that we
can iterate this process to yield the second 𝑓 (2) , third 𝑓 (3)

and so on derivatives of 𝑓 . In general, we will denote the
𝑛-th derivative of 𝑓 as 𝑓 (𝑛) .

There are a number of examples where a legitimate di�er-
entiable function 𝑓 yields a derivative function 𝑓 ′ that is
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itself non-di�erentiable or even non-continuous. Just for
illustration, the following function

𝑉 (𝑥) =
{
𝑥2 sin 1/𝑥 if 𝑥 ≠ 0
0 if 𝑥 = 0

known as Volterra’s function, is di�erentiable everywhere,
but it is discontinuous at a bunch of points known as the
Smith-Volterra-Cantor set.

For the purpose of this course, we will consider only a class
of functions known as smooth which admit as many higher-
order derivatives as needed in the domain of the function.

10.2 Local quadratic approximation

The importance of the higher-order derivatives of 𝑓 is that
they convey more nuances about the local shape of the func-
tion about the point of interest.

Let’s consider the second derivative of 𝑓 at a point 𝑎, say
𝑓 (2) (𝑎). What is it telling us? This is the local growth
rate of the function 𝑓 ′ at 𝑎, i.e. at what rate is the local
growth rate of 𝑓 changing about 𝑎. The situation in a point
𝑝 where 𝑓 (2) (𝑝) > 0 can look very di�erent compared with
the situation in another point 𝑞 where 𝑓 (2) (𝑞) < 0, even if
𝑓 ′(𝑝) = 𝑓 ′(𝑞).

In the �rst case, with 𝑓 (2) (𝑝) > 0, we may encounter a
situation like the following one:
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Whilst in the second case, with 𝑓 (2) (𝑞) < 0, we may en-
counter a completely di�erent situation, even if both func-
tions have derivative equal to zero at the point of interest:

These examples suggest that a better approximation could
be attained if only we could incorporate also the information
conveyed by the second derivative of 𝑓 . Using an a�ne func-
tions we have no more room left to carry more information
about the local shape of 𝑓 at a certain point 𝑎.

We must use another type of function that gives us some
more �exibility to satisfy the additional requirement that
the second derivative of the approximation must be equal
to the second derivative of 𝑓 . In other words, we look for
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an as simple function as possible, say 𝑄 (𝑥) that sati�es the
following three requirements:

1. 𝑄 (𝑎) = 𝑓 (𝑎)

2. 𝑄 ′(𝑎) = 𝑓 ′(𝑎)

3. 𝑄 (2) (𝑎) = 𝑓 (2) (𝑎)

Can we �gure out a solution to the problem of the following
form?

𝑄 (𝑥) = 𝑘0 + 𝑘1(𝑥 − 𝑎) + 𝑘2(𝑥 − 𝑎)2

Using the �rst requirement we get 𝑘0 = 𝑓 (𝑎). The derivative
of𝑄 (𝑥) is𝑄 ′(𝑥) = 𝑘1+2𝑘2(𝑥−𝑎), therefore using the second
requirement we conclude that 𝑘1 = 𝑓 ′(𝑎). Finally, we can see
that the second derivative of𝑄 (𝑥) is𝑄 (2) (𝑎) = 2𝑘2, therefore
using the third requirement we conclude that 𝑘2 = 1

2 𝑓
(2) (𝑎).

Our candidate function

𝑄 (𝑥) = 𝑓 (𝑎) + 𝑓 ′(𝑎) (𝑥 − 𝑎) + 1/2𝑓 (2) (𝑎) (𝑥 − 𝑎)2

is very much like the a�ne approximation, albeit with an
additional term of degree 2. Does this additional quadratic
term make the approximation better than the a�ne approx-
imation in any way? The answer is yes, in a sense that is
made precise in the following proposition, which we leave
without proof:

Proposition 35. If 𝑓 is a smooth function at 𝑎, then

𝑓 (𝑥) = 𝑓 (𝑎) + 𝑓 ′(𝑎) (𝑥 − 𝑎) + 1
2
𝑓 (2) (𝑎) (𝑥 − 𝑎)2 + 𝔬((𝑥 − 𝑎)2)
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In other words, the approximation error of the quadratic ap-
proximation is guaranteed to converge towards zero locally
at 𝑎 faster than (𝑥 − 𝑎)2.

10.3 Taylor’s approximation

There is no reason why we cannot extend the argument
that made possible the quadratic approximation with higher-
order derivatives of 𝑓 . Intuitively, the more higher-order
derivatives we know, the more nuanced an approximation
we can build. So we can extend our search to higher-degree
polynomials. Concretely, if we know all the derivatives of 𝑓
at 𝑎 up to order 𝑛, can we �nd a polynomial function 𝑇 (𝑥)
that satisi�es the following requirements?

1. 𝑇 (𝑎) = 𝑓 (𝑎)

2. 𝑇 ′(𝑎) = 𝑓 ′(𝑎)

3. 𝑇 (2) (𝑎) = 𝑓 (2) (𝑎)

...

𝑛 + 1. 𝑇 (𝑛) (𝑎) = 𝑓 (𝑛) (𝑎)

Repeating the same argument as before in an iterative way,
we can see that our candidate polynomial is uniquely deter-
mined by the list of requirements:

𝑇 (𝑥) =
𝑛∑︁

𝑘=0

1
𝑘!

𝑓 (𝑘) (𝑎) (𝑥 − 𝑎)𝑘
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where we adopt the convention that 𝑓 (0) (𝑎) = 𝑓 (𝑎) and that
0! = 1.

In which sense do these additional higher-order terms make
the approximation better than the lower degree ones? The
answer is provided by the following result, which we leave
without proof:

Theorem 4 (Taylor’s theorem). If 𝑓 is a smooth function at
𝑎, then

𝑓 (𝑥) =
𝑛∑︁

𝑘=0

1
𝑘!

𝑓 (𝑘) (𝑎) (𝑥 − 𝑎)𝑘 + 𝔬((𝑥 − 𝑎)𝑛)

In other words, the approximation error of the Taylor poly-
nomial of degree 𝑛 is guaranteed to converge towards zero
locally at 𝑎 faster than (𝑥 − 𝑎)𝑛 .

10.4 Finding local extrema

Adi�erentiable function 𝑓 is said to have a critical point in𝑎 if
𝑓 ′(𝑎) = 0. The collection of critical points of a di�erentiable
function are important, because they are the only candidates
where the function can reach a maximum or a minimum. In
general, using the approximation results above described, we
can classify all the critical points in either of three categories:
maxima, minima and in�ection points.

Theorem 5 (Classi�cation of critical points). Let 𝑎 be a crit-
ical point of a smooth function 𝑓 . Let

𝑛 = min{𝑛 ≥ 2 | 𝑓 (𝑛) (𝑎) ≠ 0}.
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The following statements hold:

• If 𝑛 is even and 𝑓 (𝑛) (𝑎) < 0, then 𝑎 is a local maximum.

• If 𝑛 is even and 𝑓 (𝑛) (𝑎) > 0, then 𝑎 is a local minimum.

• If 𝑛 is odd, then 𝑎 is an in�ection point.

An in�ection point can be de�ned as a critical point that
is neither a local maximum nor a local minimum, i.e. in
any interval about 𝑎 we can �nd points 𝑝 and 𝑞 such that
𝑓 (𝑝) > 𝑓 (𝑎) > 𝑓 (𝑞).

Let’s see how we can prove the claims of the theorem. Using
Taylor’s theorem in the situation of the theorem, 𝑓 takes the
following form:

𝑓 (𝑥) = 𝑓 (𝑎) + 1
𝑛!

𝑓 (𝑛) (𝑎) (𝑥 − 𝑎)𝑛 + 𝔬((𝑥 − 𝑎)𝑛)

If 𝑛 is even and 𝑓 (𝑛) (𝑎) < 0, we should justify that there is
an interval about 𝑎 where 𝑓 (𝑎) is the maximum value that
𝑓 (𝑥) takes. This would mean that 𝑓 (𝑥) − 𝑓 (𝑎) < 0 for 𝑥 ≠ 𝑎

in the said interval. But using the expression of 𝑓 we can
prove that, indeed. Since

𝜓 (𝑥) = 𝑓 (𝑥) − 𝑓 (𝑎) = 1
𝑛!

𝑓 (𝑛) (𝑎) (𝑥 − 𝑎)𝑛 + 𝔬((𝑥 − 𝑎)𝑛)

we are bound to prove that𝜓 (𝑥) < 0 in some interval (how-
ever small) about 𝑎. Since 𝑛 is even, (𝑥 − 𝑎)𝑛 > 0 for 𝑥 ≠ 𝑎,
so dividing by (𝑥 − 𝑎)𝑛 would not change the sign:

𝜓 (𝑥)
(𝑥 − 𝑎)𝑛 =

1
𝑛!

𝑓 (𝑛) (𝑎) + 𝔬((𝑥 − 𝑎)𝑛)
(𝑥 − 𝑎)𝑛

105



Elements of Mathematics

But we know that the second term converges towards zero
as we get closer to 𝑎

lim
𝑥→𝑎

𝔬((𝑥 − 𝑎)𝑛)
(𝑥 − 𝑎)𝑛 = 0

meaning that for values 𝑥 close enough to 𝑎, we must have

𝜓 (𝑥)
(𝑥 − 𝑎)𝑛 < 0,

but since the sign of𝜓 (𝑥)/(𝑥 −𝑎)𝑛 must be equal to the sign
of𝜓 (𝑥) = 𝑓 (𝑥) − 𝑓 (𝑎) the conclusion follows. The other two
cases of the theorem can be justi�ed in exactly the same way.

10.5 TL;DR

The more higher-derivatives of 𝑓 at 𝑎 we know, the more nu-
anced our understanding of the local behaviour of 𝑓 about 𝑎.
For smooth functions Taylor’s polynomial is the key mathe-
matical object that assembles all the higher-order derivatives
in a polynomial function to render local approximations of
𝑓 , the better the higher the degree of the polynomial. With
this polynomial we thus generalize the idea of local a�ne
approximation. With these results at hand, we can then go
about studying the critical points of 𝑓 into three possible
categories: maxima, minima and in�ection points.

106


