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The derivative

9.1 Context and motivation

When reasoning about the relationships between observable
magnitudes in nature, functions come as a �rst-class citizens,
for many ways of reasoning are based on this very notion.

We will de�ne functions as abstract machines that compute
an output from a input, so we can think of them as programs
that receive some input of type 𝐴 and returns an output of
type 𝐵, denoted

𝑓 : 𝐴 → 𝐵.

In this and subsequent chapters we will focus on numeric
functions, i.e., functions for which both the inputs and out-
puts can be real numbers (single variable case 𝑓 : R→ R) or
tuples of real numbers (multivariable case 𝑓 : R𝑛 → R).

The output of a function is completely determined by its
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input. The domain of a function 𝑓 , denoted Dom(𝑓 ), is the
set of input values for which the function can return an
output. It is customary to represent functions graphically
using the graph of the function: a graphical representation
using coordinates both for the input and ouput space in
which the geometric place where inputs and outputs meet is
drawn. Formally, the graph of a function 𝑓 : R→ R is given
by the following set of points in the plane:

Γ(𝑓 ) = {(𝑥, 𝑓 (𝑥)) | 𝑥 ∈ Dom(𝑓 )}

9.2 Review on limits

We say that a function 𝑓 : R→ R has a limit 𝐿 about some
point 𝑎 ∈ R if for any given radius 𝜖 > 0 we can always
�nd a 𝛿 > 0 such that if 𝑥 ≠ 𝑎 satis�es |𝑥 − 𝑎 | < 𝛿 , then
|𝑓 (𝑥) − 𝐿 | < 𝜖 . We denote it

lim
𝑥→𝑎

𝑓 (𝑥) = 𝐿

This somehow technical de�nition has a very simple intuition
behind: when a function has a limit about some point 𝑎, the
function cannot �uctuate much in the vicinity of 𝑎; moreover,
given some distance 𝜖 , no matter how small, there is always
an interval about the point 𝑎 such that the outputs get closer
from 𝐿 than 𝜖 .

The limit of a function at a point is a very handy idea that
we can use to our advantage in order to state some intu-
itive concepts in a more formal way and also to make them
operational.
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9.3 Continuity

Functions in general can be very wild: e.g. we can think of
functions for which close inputs (in some sense that we can
make precise) give rise to arbitrarily far apart outputs. We
will consider only functions that ensure that gradual changes
in the input yield gradual changes in the output.

We will say that a function 𝑓 : R→ R is continuous at some
point 𝑎 ∈ R if the limit of 𝑓 about 𝑎 exists and it is 𝑓 (𝑎).

An alternative, more graphical way to put it goes as follows:

Imagine that you are considering all the possible numbers
in the output space that are closer than 𝜖 (no matter how
small) from 𝑓 (𝑎). That 𝑓 is continous at 𝑎 means that you
can always �nd a small enough interval 𝐼 = [𝑎 − 𝛿, 𝑎 + 𝛿]
such that all the inputs in this interval will yield outputs in
the interval [𝑓 (𝑎) − 𝜖, 𝑓 (𝑎) + 𝜖].

We say that the function is continuous if it is continuous at
every point in its domain.

9.4 Derivative

We can de�ne informally the derivative of a function at a
point𝑎 as the slope or growth rate of the graph of the function
when we zoom in closer and closer on 𝑎. This is usually
formulated using some sort of limit expression:

lim
Δ𝑥→0

𝑓 (𝑎 + Δ𝑥) − 𝑓 (𝑎)
Δ𝑥
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In other words, the derivative tells us how to attach a slope
or growth rate at a given point.

More formally, we de�ne the derivative of 𝑓 : R → R at 𝑎,
whenever it exists, as the following limit:

𝑓 ′(𝑎) = lim
ℎ→0

𝑓 (𝑎 + ℎ) − 𝑓 (𝑎)
ℎ

We will say that 𝑓 is di�erentiable at 𝑎 if 𝑓 ′(𝑎) exists and we
will say 𝑓 is di�erentiable if it is di�erentiable at all points of
its domain.

Not all continuous functions are di�erentiable: there are
continuous functions that are still a bit rough, in the sense
that there may be points for which we lack a sense of growth
rate. A prototypical example is the function 𝑓 (𝑥) = |𝑥 |: what
happens around the point 𝑎 = 0?

Even though there are many examples of non-di�erentiable
functions that are useful for many scienti�c use cases, the
class of di�erentiable functions is by far the most important
from a practical point of view.

9.5 Local a�ne approximations

Beyond the formal de�nition of the derivative, it is important
to understand what it means geometrically for a function to
be di�erentiable: a function is di�erentiable at a point 𝑎 if it
can be approaximated by an a�ne function. This means that
we can draw a straight line through the point 𝑃 = (𝑎, 𝑓 (𝑎))
so that the more we zoom in into the 𝑃 , the more the graph
of 𝑓 resembles the straight line.
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In order to discuss local a�ne approximations, we will in-
troduce a formal way to say that functions whose values
converge towards zero (as 𝑥 tends to some point of interest
𝑎) can converge towards zero at di�erent velocities. For two
functions 𝑓 and 𝑔 such that

𝑙𝑖𝑚𝑥→𝑎 𝑓 (𝑥) = 0, lim
𝑥→𝑎

𝑔(𝑥) = 0

we will say that that the function 𝑓 is little-o of 𝑔, denoted
𝑓 = 𝔬(𝑔), if the following condition is satis�ed:

lim
𝑥→𝑎

𝑓 (𝑥)
𝑔(𝑥) = 0.

Intuitively, 𝑓 converges faster than 𝑔 towards zero as 𝑥 tends
to 𝑎.

Proposition 33. Let 𝑓 , 𝑔, ℎ be functions that tend towards
zero about the point 𝑎. If 𝑓 = 𝔬(ℎ) and 𝑔 = 𝔬(ℎ) then the
following holds:

1. 𝑓 + 𝑔 = 𝔬(ℎ)

2. 𝜆𝑓 = 𝔬(ℎ)

3. 𝑓 𝑔 = 𝔬(ℎ2)

4. If 𝑓 = 𝔬(ℎ2) then 𝑓 = 𝔬(ℎ)

We say that a function 𝑓 has 𝑔(𝑥) = 𝑓 (𝑎) +𝑘 (𝑥 −𝑎) as a local
a�ne approximation if

𝑓 (𝑥) = 𝑔(𝑥) + 𝔬(𝑥 − 𝑎).

Observe that there are two important conditions sati�ed:
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• 𝑓 (𝑎) = 𝑔(𝑎)

• For values 𝑥 ≠ 𝑎, the di�erence 𝑓 (𝑥) −𝑔(𝑥) converges
faster towards zero than 𝑥 − 𝑎 as 𝑥 tends to 𝑎.

If a function has a local a�ne approximation, it is unique:

Suppose we have two local a�ne approximations:

𝑓 (𝑥) = 𝑓 (𝑎) +𝑘1(𝑥−𝑎) +𝔬(𝑥−𝑎) = 𝑓 (𝑎) +𝑘2(𝑥−𝑎) +𝔬(𝑥−𝑎)

Then the following identity must hold:

𝑘1(𝑥 − 𝑎) + 𝔬(𝑥 − 𝑎) = 𝑘2(𝑥 − 𝑎) + 𝔬(𝑥 − 𝑎) .

But if we transform this equation dividing both members by
𝑥 − 𝑎 and taking limits 𝑥 → 𝑎 we get:

𝑘1 + lim
𝑥→𝑎

𝔬(𝑥 − 𝑎)
𝑥 − 𝑎

= 𝑘2 + lim
𝑥→𝑎

𝔬(𝑥 − 𝑎)
𝑥 − 𝑎

By de�nition the limits vanish, then we conclude that 𝑘1 = 𝑘2.

Proposition 34. If 𝑓 is di�erentiable at 𝑎, then it has a local
a�ne approximation at 𝑎. Moreover, the derivative of 𝑓 at 𝑎 is
the slope of this approximation:

𝑓 (𝑥) = 𝑓 (𝑎) + 𝑓 ′(𝑎) (𝑥 − 𝑎) + 𝔬(𝑥 − 𝑎) .

9.6 Master rules to compute derivatives

In this section we will prove three basic rules to compute the
derivative of a function that results from combining other

94



The derivative

functions via sum, product and composition. With these
important rules we will be able to compute the derivative of
more complex functions.

In all cases wewill strongly rely on the fact that the derivative
at some point must be the slope of the local a�ne approxi-
mation at that point.

9.6.1 Additivity

Let 𝑓 and 𝑔 be two di�erentiable functions, which can be
expressed locally at 𝑎 via their a�ne approximations as:

𝑓 (𝑥) = 𝑓 (𝑎) + 𝑓 ′(𝑎) (𝑥 − 𝑎) + 𝔬(𝑥 − 𝑎)

𝑔(𝑥) = 𝑔(𝑎) + 𝑔′(𝑎) (𝑥 − 𝑎) + 𝔬(𝑥 − 𝑎)
respectively. Summing both expressions we can get a local
a�ne approximation for the function ℎ(𝑥) = 𝑓 (𝑥) + 𝑔(𝑥):

ℎ(𝑥) = 𝑓 (𝑎) + 𝑔(𝑎) + (𝑓 ′(𝑎) + 𝑔′(𝑎)) (𝑥 − 𝑎) + 𝔬(𝑥 − 𝑎) .

We can conclude that

ℎ′(𝑎) = 𝑓 ′(𝑎) + 𝑔′(𝑎),

i.e. the derivative of the sum of functions if the sum of their
derivatives.

9.6.2 Leibniz rule

Let’s now apply the same idea to the product of functions
𝑝 (𝑥) = 𝑓 (𝑥)𝑔(𝑥):

𝑝 (𝑥) = 𝑓 (𝑥)𝑔(𝑥) =
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(𝑓 (𝑎)+ 𝑓 ′(𝑎) (𝑥−𝑎)+𝔬(𝑥−𝑎)) (𝑔(𝑎)+𝑔′(𝑎) (𝑥−𝑎)+𝔬(𝑥−𝑎)) =

= 𝑓 (𝑎)𝑔(𝑎) + (𝑓 ′(𝑎)𝑔(𝑎) + 𝑔′(𝑎) 𝑓 (𝑎)) (𝑥 − 𝑎) + 𝔬(𝑥 − 𝑎) .

We can the conclude that

𝑝 ′(𝑎) = (𝑓 𝑔) ′(𝑎) = 𝑓 ′(𝑎)𝑔(𝑎) + 𝑔′(𝑎) 𝑓 (𝑎)

which is commonly known as Leibniz rule.

9.6.3 Chain rule

Let 𝑐 (𝑥) = 𝑔(𝑓 (𝑥)) which is also commonly expressed as
(𝑔 ◦ 𝑓 ). If we want to infer a rule to compute the derivative
of the function 𝑐 (𝑥) we must �rst understand what is the
result of performing the composition of two a�ne functions.

Consider the composition 𝑔 ◦ 𝑓 assuming that 𝑓 and 𝑔 are
a�ne functions, say

𝑓 (𝑥) =𝑚1𝑥 + 𝑛1, and 𝑔(𝑥) =𝑚2𝑥 + 𝑛2.

Since

(𝑔 ◦ 𝑓 ) (𝑥) = 𝑔(𝑓 (𝑥)) =𝑚2 𝑓 (𝑥) + 𝑛2 =𝑚2𝑚1𝑥 + (𝑚2𝑛1 + 𝑛2)

we can conclude that the composition 𝑔 ◦ 𝑓 is also an a�ne
function with slope𝑚2𝑚1.

If we apply this observation to the composition of two dif-
ferentiable functions, the local a�ne approximation of the
composition 𝑔 ◦ 𝑓 at the point 𝑎 will have a slope that is the
product of the two slopes of the local a�ne approximations
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of 𝑓 at 𝑎, and of 𝑔 at 𝑓 (𝑎), respectively: these slopes are 𝑓 ′(𝑎)
and 𝑔′(𝑓 (𝑎)), respectively. We can conclude that:

(𝑔 ◦ 𝑓 ) ′(𝑎) = 𝑔′(𝑓 (𝑎)) 𝑓 ′(𝑎)

which is commonly known as the chain rule.

9.7 TL;DR

The derivative of a function at a point 𝑎 provides the local
trend of the function about 𝑎. We may think of it as the limit
growth rate of the function when you compare the value of
the function at the point 𝑎 with values at other points that
can be as close to 𝑎 as wanted. This simple intuition requires,
however, a bunch of somewhat technical ideas like the limit
of a function. Not all functions admit derivatives, but when
they do we can de�ne a local a�ne approximation with the
derivative as its slope.
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