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Principal component
analysis

8.1 Introduction

When trying to understand the structure of a tabular dataset,
a central question to ask is which features carry more infor-
mation and whether some features can be recovered from
other features.

In general, compactness of the data we work with is impor-
tant not only for ease of interpretability, but also because
working with high-dimensional representations can lead to
various pathologies at the time of storing, organizing or ana-
lyzing the data. This is generically referred to as the curse of
dimensionality.

Moreover, a point can be made that the ultimate goal of ma-
chine learning and scientic endeavour at large is to distill
as compact models as possible to explain the natural phe-
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nomena we read the data from.

The technique we are about to describe concerns the analysis
of tabular data with numerical entries. From now on we
will assume that an 𝑛 ×𝑚 matrix 𝑀 encodes feature value
information per sample of an experiment: each column of
𝑀 will represent one feature and each row will represent a
sample.

8.2 Sample covariance matrices

Given two numerical random variables 𝑋 and 𝑌 that are
jointly and randomly sampled 𝑛 times we can dene their
covariance as the following expression:

cov(𝑋,𝑌 ) = 1
𝑛

𝑛∑︁
𝑖=1

(𝑋𝑖 − 𝐸 (𝑋 )) (𝑌𝑖 − 𝐸 (𝑌 ))

where 𝐸 (𝑋 ) and 𝐸 (𝑌 ) are the respective means of the random
variables. However theoretically convenient, this concept
cannot be directly applied to any data unless we know exactly
how the data is distributed, which happens rarely, if ever at
all. Instead, we will employ a statistic the approximates the
theoretical value, the sample covariance:

Ω𝑋,𝑌 =
1

𝑛 − 1

𝑛∑︁
𝑖=1

(𝑋𝑖 − 𝑋 ) (𝑌𝑖 − 𝑌 )

where this time𝑋 and 𝑌 denote the respective sample means.

The reader may ask why there is a 1/(𝑛 − 1) factor in the
sample covariance expression. This is due to the fact that
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with a 1/𝑛 factor the sample covariance would be a biased
estimator of the covariance, i.e. the expected value of the
sample covariance would miss the population covariance
short by a (𝑛 − 1)/𝑛 factor. This is known as Bessel’s cor-
rection. Although this correction is not obvious, we will not
provide a proof here.

The sample covariance has a few interesting properties that
make it a good statistic to assess the dependency between
random variables which for convenience we can simply refer
to as features, because this is the role random variables will
have in our setting.

Proposition 31. The following properties hold:

1. cov(𝑋,𝑌 ) = cov(𝑌,𝑋 )

2. cov(𝑎𝑋 + 𝑏𝑌, 𝑍 ) = 𝑎cov(𝑋,𝑍 ) + 𝑏cov(𝑌, 𝑍 )

3. cov(𝑋,𝑋 ) = 𝜎2
𝑋
≥ 0, the variance of 𝑋

4. If 𝑋 and 𝑌 are independent random variables, then
cov(𝑋,𝑌 ) = 0

We dene the sample covariance matrix of the data encoded
in𝑀 as the𝑚 ×𝑚 matrix Ω with entries Ω𝑖 𝑗 containing the
sample covariance of the 𝑖-th and 𝑗-th columns of𝑀 :

Ω𝑖 𝑗 = Ω𝑀𝑖 ,𝑀𝑗
=

1
𝑛 − 1

𝑛∑︁
𝑘=1

(𝑀𝑘𝑖 − �̄�𝑖) (𝑀𝑘 𝑗 − �̄� 𝑗 )

The sample covariance matrix is symmetric and contains the
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sample variance of the columns of𝑀 as diagonal entries. By
the very denition of the sample covariance, we can also see
that Ω can be expressed as 𝐴𝑡𝐴. Can you guess the matrix 𝐴
that accomplishes this?

We can obtain 𝐴 from𝑀 in two steps:

First we substract the respective column average from every
element. This process is often referred to as centering the
data, because the resulting columns have average equal to
zero. Written with matrices, we obtain �̃�

�̃� = 𝑀 − 1
𝑛
1𝑛×𝑛𝑀,

where 1𝑛×𝑛 is the all ones 𝑛 × 𝑛 matrix.

Then we can rescale �̃� as

𝐴 =
1

√
𝑛 − 1

�̃�

In other words, 𝐴 is nothing less than the input data, albeit
properly normalized, i.e., centered and rescaled.

8.3 PCA via eigendecomposition

The sample covariance matrix Ω = 𝐴𝑡𝐴 encapsulates in-
formation about the statistical dependence of the feature
values across samples. This a positive-semidenite (hence
symmetric) matrix that admits an orthonormal basis V =

{𝑣1, . . . , 𝑣𝑚} of eigenvectors with eigenvalues

𝜎2
1 ≥ 𝜎2

2 ≥ . . . ≥ 𝜎2
𝑚 .
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Therefore the following matrix identity is satised,

𝑉 𝑡Ω𝑉 = diag(𝜎2
1 , . . . , 𝜎

2
𝑚),

where 𝑉 is the orthogonal matrix that has the eigenvectors
𝑣𝑖 as columns. Taking into account the expression of Ω, note
that the identity can be written as follows:

𝑉 𝑡𝐴𝑡𝐴𝑉 = diag(𝜎2
1 , . . . , 𝜎

2
𝑚),

meaning that if we use thematrix𝑉 to generate a new dataset
𝐴PCA = 𝐴𝑉 where the features are linear combinations of the
orginal features, the new features will satisfy the following:

1. Pairs of distinct features have sample covariance equal
to zero, i.e., the new features are statistically indepen-
dent from each other.

2. The variance of the 𝑖-th feature is equal to 𝜎2
𝑖 .

We will say that the vectors 𝑣1, . . . , 𝑣𝑚 are the principal com-
ponents or principal directions of our dataset. The entries of
each principal component are referred to as its loadings: the
loadings represent the weight that each original feature has
in the principal component. With the principal components
we have a new coordinate system in which we can express
the data vectors corresponding to a sample in our dataset:
the coordinates of the centered feature values in the basis of
principal components are referred to as the principal compo-
nent scores: there is one score value per sample and principal
component.

Proposition 32. The principal component score for a sample
𝑠 and principal component 𝑣 is the length of the orthogonal
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projections of the vector of centered feature values of the sample
𝑠 onto 𝑣 .

Let’s denote �̃� the vector of centered feature values and𝑤
the vector of principal value scores, which according to the
preceding argument can be seen as the column vectors of
�̃�𝑡 and (�̃�𝑉 )𝑡 = 𝑉 𝑡�̃�𝑡 , respectively. Therefore, the following
relation holds:

𝑤 = 𝑉 𝑡�̃� .

The 𝑖-th component of𝑤 can be expressed as

𝑤𝑖 = 𝑣𝑡𝑖 �̃� = 𝑣𝑖 · �̃� .

In other words, the scores are the coordinates of �̃� in the
new basis of principal components.
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