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Eigendecomposition

In this chapter we are going to look into the makeup of
linear transformations by doing some computations with
the matrices that represent them. We will �nd out that in
many cases of interest, we will be able to choose a basis
where the matrix that represents the linear transformation is
particularly simple. The techniques presented in this chapter
are practically simple to de�ne and implement, but their
implications pervade all data science. In particular, we will
lay the foundations for speaking about Principal Component
Analysis (PCA) and Singular Value Decomposition (SVD).

6.1 Eigenstu�

Given a linear transformation

𝐹 : R𝑛 → R𝑛

𝑣 ↦→ 𝑀𝑣
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we will say that a non-zero vector 𝑣 is an eigenvector with
eigenvalue 𝜆 if

𝑓 (𝑣) = 𝑀𝑣 = 𝜆𝑣.

From the point of view of an eigenvector, the e�ect of the
linear transformation is just rescaling.

The set of all eigenvectors with eigenvalue 𝜆 along with the
zero vector, form a vector space known as the eigenspace of
𝜆:

𝐸𝜆 = {𝑣 ∈ R𝑛 | 𝑀𝑣 = 𝜆𝑣}

This is why instead of being concerned about �nding speci�c
eigenvectors, we will rather �nd entire eigenspaces associ-
ated with eigenvalues.

6.2 Finding eigenstu�

Eigenvectors and eigenvalues have a particular �ngerprint
that make them easy to �nd and collect. Suppose that 𝑣 ∈ R𝑛
is an eigenvector of 𝑓 with eigenvalue 𝜆. Then

𝑀𝑣 = 𝜆𝑣 ⇒ 𝑀𝑣 − 𝜆𝑣 =
→
0

⇒ (𝑀 − 𝜆I)𝑣 =
→
0⇒ 𝑣 ∈ 𝑁 (𝑀 − 𝜆I)

Consequently, whenever there is a non-zero null-space of
the form 𝑁 (𝑀 − 𝜆I), there you have the eigenvectors with
eigenvalues 𝜆.
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6.2.1 Finding eigenvalues

The �rst step is to �nd all the possible such eigenvalues. A
scalar 𝜆 is an eigenvalue if and only if 𝑁 (𝑀 − 𝜆I) ≠ →

0 , i.e.,
dim(𝑁 (𝑀 − 𝜆I)) > 0 which is the same to say that𝑀 − 𝜆I
is not full rank (by Theorem 1). Then all we have to do is
to �nd all the 𝜆’s such that𝑀 − 𝜆I is not full rank, which in
turn is equivalent to

det(𝑀 − 𝜆I) = 0.

The characteristic polynomial of a matrix𝑀 is the polynomial
in one variable 𝑡 , denote 𝑄 (𝑡), is de�ned as det(𝑀 − 𝑡I).

Proposition 24. The eigenvalues of 𝑓 are the roots of the
characteristic polynomial of its associated matrix.

Since the characteristic polynomial of𝑀 , 𝑄 (𝑡), is a polyno-
mial of degree 𝑛, the equation 𝑄 (𝑡) = 0 will have at most 𝑛
di�erent real solutions (roots of 𝑄 (𝑡)).

Note that we do not have to be worried about which matrix
representation of 𝑓 to use. Even though the matrix associated
to 𝑓 will be di�erent in coordinates of di�erent bases, the
characteristic polynomial of each matrix representing 𝑓 will
always be the same.

Suppose that𝑀 ′ = 𝐶𝑀𝐶−1 is the matrix of 𝑓 in coordinates
of another basis, with 𝐶 the change of basis matrix. Then:

det(𝑀 ′ − 𝑡I) = det(𝐶𝑀𝐶−1 − 𝑡I) =

= det(𝐶𝑀𝐶−1 − 𝑡𝐶I𝐶−1) = det(𝐶 (𝑀 − 𝑡I)𝐶−1) =
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= det(𝐶)det(𝑀 − 𝑡I)det(𝐶−1) = det(𝑀 − 𝑡I)

If 𝜆 is a root of 𝑄 (𝑡), then 𝑄 (𝑡) can factor as:

𝑄 (𝑡) = (𝑡 − 𝜆)𝑃 (𝑡),

where 𝑃 (𝑡) is a degree 𝑛 − 1 polynomial.

For every root 𝜆 of 𝑄 (𝑡) we can de�ne its multiplicity as the
maximum 𝑘 such that 𝑄 (𝑡) can factor as:

𝑄 (𝑡) = (𝑡 − 𝜆)𝑘𝑃 (𝑡),

where 𝑃 (𝑡) is a degree 𝑛 − 𝑘 polynomial.

There is a trick to compute eigenvalues of lower size matrices
that we can state as a proposition:

Proposition 25. If𝐴 is a 2×2matrix, their eigenvalues 𝜆1, 𝜆2
can be computed solving the following system of non-linear
equations: {

𝜆1 + 𝜆2 = trace(𝐴)
𝜆1𝜆2 = det(𝐴)

6.2.2 Finding eigenspaces

Computing eigenspaces amounts to computing null-spaces
of matrices. If 𝜆 is an eigenvalue of 𝑓 , then we will compute
the eigenspace associated to 𝜆 as:

𝑁 (𝑀 − 𝜆I) = {𝑣 ∈ R𝑛 | (𝑀 − 𝜆I)𝑣 =
→
0 }
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Using Gauss-Jordan elimination we will be able to provide
a basis for each eigenspace, thus completely characterizing
the eigenvectors associated with each possible eigenvalue.

To summarize the steps for computing eigenstu�:

1. Compute the characteristic polynomial as

𝑄 (𝑡) = det(𝑀 − 𝑡I)

2. Find 𝜆1, . . . , 𝜆𝑘 the roots of 𝑄 (𝑡)

3. For each 𝜆𝑖 compute a basis for𝑁 (𝑀−𝜆𝑖I) using Gauss-
Jordan elimination.

How do eigenvectors of di�erent values relate to one an-
other?

Proposition 26. If 𝑣1, . . . , 𝑣𝑘 are eigenvectors with pairwise
di�erent eigenvalues, they are linearly independent.

The case 𝑘 = 2 is relatively simple. If 𝑣1, 𝑣2 are eigenvectors
(non-zero) with di�erent eigenvalues 𝜆1 ≠ 𝜆2, they cannot
be collinear, since that would lead to a contradiction:

𝑣1 = 𝜆𝑣2 ⇒

𝜆1𝑣1 = 𝑓 (𝑣1) = 𝜆𝑓 (𝑣2) = 𝜆𝜆2𝑣2 = 𝜆2𝑣1

We will reason by induction: assuming that we have proved
that given any 𝑖 eigenvectors with di�erent eigenvalues they
must be linearly independent, we will prove that the same
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holds true for 𝑖 + 1 eigenvectors. Since we have already
proved it for the case of two vectors, it must hold for three,
four... and any number of eigenvectors.

Suppose that 𝑣1, . . . , 𝑣𝑖 , 𝑣𝑖+1 are not linearly independent. Rein-
dexing if necessary, we know that

𝑣𝑖+1 = 𝛼1𝑣1 + . . . + 𝛼𝑖𝑣𝑖

By applying 𝑓 we get, on the one hand,

𝑓 (𝑣𝑖+1) = 𝜆𝑖+1𝑣𝑖+1 = 𝜆𝑖+1𝛼1𝑣1 + . . . + 𝜆𝑖+1𝛼𝑖𝑣𝑖

and on the other,

𝑓 (𝑣𝑖+1) = 𝛼1 𝑓 (𝑣1) + . . . + 𝛼𝑖 𝑓 (𝑣𝑖) = 𝛼1𝜆1𝑣1 + . . . + 𝛼𝑖𝜆𝑖𝑣𝑖

Given the fact that 𝑣1, . . . , 𝑣𝑖 are linearly independent, their
coe�cients must be the same in both experssions of 𝑓 (𝑣𝑖+1),
therefore 

𝜆𝑖+1𝛼1 = 𝜆1𝛼1

· · ·
𝜆𝑖+1𝛼𝑖 = 𝜆𝑖𝛼𝑖

Since 𝑣𝑖+1 ≠
→
0 , 𝛼 𝑗 ≠ 0 for some 1 ≤ 𝑗 ≤ 𝑖 , implying that

𝜆𝑖+1 = 𝜆 𝑗 . But this contradicts the fact that the 𝑣1, . . . , 𝑣𝑖+1
have pairwise di�erent eigenvalues.

We can make an even stronger claim in the case where the
matrix of the linear transformation is symmetric.

Proposition 27. If 𝑣1, . . . , 𝑣𝑘 are eigenvectors of a symmetric
linear transformation with pairwise di�erent eigenvalues, they
are orthogonal.

68



Eigendecomposition

Take two eigenvectors 𝑣1, 𝑣2 with di�erent eigenvalues and
let’s check that their dot product vanishes. The idea is that,
because𝑀𝑡 = 𝑀 , then𝑀𝑣1 · 𝑣2 = 𝑣1 ·𝑀𝑣2. On the one hand,

𝑣𝑡2𝑀𝑣1 = 𝑣2 · 𝜆1𝑣1 = 𝜆1𝑣1 · 𝑣2

By taking the transpose of the previous expression, which
should give the same result because we are taking the trans-
pose of a 1 × 1 matrix,

(𝑣𝑡2𝑀𝑣1)𝑡 = 𝑣𝑡1𝑀
𝑡𝑣2 = 𝑣𝑡1𝑀𝑣2 = 𝑣1 · 𝜆2𝑣2 = 𝜆2𝑣1 · 𝑣2

Therefore (𝜆1 − 𝜆2) (𝑣1 · 𝑣2) = 0. Since 𝜆1 ≠ 𝜆2, 𝑣1 · 𝑣2 = 0
follows.

6.3 Matrix diagonalization

The matrix of a linear transformation 𝑓 : R𝑛 → R𝑛 would be
very simple if expressed in coordinates of a basis 𝑣1, . . . , 𝑣𝑛
of R𝑛 made exclusively of eigenvectors of 𝑓 , also known as
an eigenbasis of 𝑓 . In fact, the matrix would be diagonal, and
diagonal matrices are extremely confortable to work with:

𝜆1 . . . 0
...

. . .
...

0 . . . 𝜆𝑛


Although it is not always the case that such an eigenbasis
exists for a given 𝑓 , we will study the conditions where
this is possible. We will say that a linear transformation is
diagonalizable if it has an eigenbasis.
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6.3.1 Checking diagonalization

As usual, we are given the matrix 𝑀 and asked to verify
whether it is diagonalizable. Suppose that we have found
the eigenvalues 𝜆1, . . . , 𝜆𝑘 and their respective eigenspaces
𝐸𝜆𝑖 = 𝑁 (𝑀 − 𝜆𝑖I).

Proposition 28. 𝑀 is diagonalizable if and only if

𝑘∑︁
𝑖=1

dim(𝐸𝜆𝑖 ) = 𝑛.

In this situation, ifB𝑖 is a basis of 𝐸𝜆𝑖 , thenB = B1∪ . . .∪B𝑘

is a basis of R𝑛 .

Here are some examples of linear transformations that are
diagonalizable:

• Projections

• Symmetries

• Dilation/Contraction

The following matrices, however, are not diagonalizable:

𝐴 =

[
0 −1
1 0

]
𝐵 =

[
1 1
0 1

]
Can you explain why?
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6.3.2 Symmetric case

We saw previously that symmetric matrices enforce stronger
conditions on the eigenspaces, in the sense that eigenspaces
with distinct eigenvalues turn out to be orthogonal to each
other. Symmetric matrices come out often in many appli-
cations and – brace yourselves – they will show when we
speak about di�erential calculus with many variables.

Theorem 2 (Spectral theorem for symmetric matrices). If
𝑀 is symmetric, the following holds:

• The characteristic polynomial of𝑀 factorizes as:

𝑄 (𝑡) =
𝑘∏
𝑖=1

(𝑡 − 𝜆𝑖)𝑘𝑖 .

• dim(𝐸𝜆𝑖 ) = 𝑘𝑖 for 1 ≤ 𝑖 ≤ 𝑘 ; in particular, 𝑀 is diago-
nalizable.

• If B𝑖 is an orthonormal basis of 𝐸𝜆𝑖 , then

B = B1 ∪ . . . ∪ B𝑘

is an orthonormal basis of R𝑛 . In particular, the encoder-
decoder matrices of B are orthogonal matrices.

6.3.3 Positive semi-de�nite case

A particularly interesting case study arises when considering
matrices that can be expressed as a matrix product of the
form 𝐴𝑡𝐴, as is the case of covariance matrices, which will be
introduced later in chapter 8.
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A rank 𝑛 × 𝑛 matrix𝑀 is referred to as positive semi-de�nite
if it can be expressed as a matrix product𝑀 = 𝐴𝑡𝐴 where 𝐴
is row full-rank, i.e., 𝐴 has rank(𝐴) rows.

A positive semi-de�nite matrix is automatically symmetric:

𝑀𝑡 = (𝐴𝑡𝐴)𝑡 = 𝐴𝑡 (𝐴𝑡 )𝑡 = 𝐴𝑡𝐴 = 𝑀.

Additionally, all its eigenvalues must be non-negative.

Proposition 29. For a symmetric matrix 𝑀 the following
statements are equivalent:

1. 𝑀 is positive semi-de�nite

2. 𝑀 satis�es 𝑣𝑡𝑀𝑣 ≥ 0 for any column vector 𝑣 ∈ R𝑛 .

3. All the eigenvalues of𝑀 are non-negative.

To see 1) ⇒ 2) note the following chain of identities:

𝑣𝑡𝑀𝑣 = 𝑣𝑡𝐴𝑡𝐴𝑣 = (𝐴𝑣)𝑡 (𝐴𝑣) = 𝐴𝑣 · 𝐴𝑣 = ‖𝐴𝑣 ‖2 ≥ 0

To see 2) ⇒ 3) suppose that 𝑣 is an eigenvector of 𝑀 with
eigenvalue 𝜆. Then

𝑣𝑡𝑀𝑣 = 𝑣𝑡 (𝜆𝑣) = 𝜆‖𝑣 ‖2 ≥ 0,

which forces 𝜆 ≥ 0. To see 3) ⇒ 1) we can arrange the
non-negative eigenvalues in a diagonal matrix 𝐷 , with

𝑑11 ≥ . . . ≥ 𝑑𝑛𝑛 ≥ 0.

Since 𝑀 is symmetric, we can express 𝐷 as 𝑄𝑡𝑀𝑄 with 𝑄

orthogonal. Since all the entries of𝐷 are non-negative,𝐷 can
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be factored using its square root: a diagonal matrix, denoted√
𝐷 , whose entries are just the square roots of those of 𝐷 .

With all this in mind we can express𝑀 as

𝑀 = 𝑄𝑡
√
𝐷
√
𝐷𝑄 = (

√
𝐷𝑄)𝑡 (

√
𝐷𝑄) .

To conclude, taking 𝐴 to be the matrix whose rows are the
rows of

√
𝐷𝑄 corresponding to the non-zero entries of

√
𝐷 ,

we have a decomposition𝑀 = 𝐴𝑡𝐴 with 𝐴 having rank(𝐴)
rows.

6.4 TL;DR

Among all the possible bases one can choose to represent
linear transformations from R𝑛 to R𝑛 , also known as “endo-
morphisms”, eigenbases, whenever available, are arguably
the best. The only caveat is that this is not always possible.
Linear transformations for which this is possible are referred
to as “diagonalizable” and there are quite a few interesting
examples meeting this criterion, i.e. symmetric endomor-
phisms.
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