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Orthogonality

Life is like riding a bicycle. To keep your balance,
you must keep moving.

Albert Einstein

5.1 Dot product

Given two 𝑛-vectors 𝑢 = (𝑢1, . . . , 𝑢𝑛) and 𝑣 = (𝑣1, . . . , 𝑣𝑛),
their dot product is the following operation:

𝑢 · 𝑣 =

𝑛∑︁
𝑖=1

𝑢𝑖𝑣𝑖 .

Is is worth noting that that dot product satis�es the following
properties:

• 𝑢 · 𝑣 = 𝑣 · 𝑢

• 𝑢 · 𝑢 ≥ 0
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• If 𝑢 ≠
→
0 then 𝑢 · 𝑢 > 0

• 𝑢· →0=→
0 ·𝑢 = 0

• (𝑢 + 𝑣) ·𝑤 = (𝑢 ·𝑤) + (𝑣 ·𝑤)

• (𝜆𝑢) · 𝑣 = 𝑢 · (𝜆𝑣) = 𝜆(𝑢 · 𝑣)

The length of a vector 𝑢, represented as ‖𝑢‖, can be de�ned
via the dot product:

‖𝑢‖ =
√
𝑢 · 𝑢

Note: Often times in the literature the dot product is rep-
resented as 𝑢𝑡𝑣 because if we think of a vector as a single
column matrix, this is exactly what comes out.

5.2 Angles between vectors

The dot product gives us an interesting way to rapidly assess
what is the angle formed by the two vectors involved. In
particular, we have the following result:

Proposition 16. The angle 𝜃 formed by two 𝑛-vectors 𝑢, 𝑣
satis�es the following:

𝑢 · 𝑣 = ‖𝑢‖‖𝑣 ‖ cos𝜃

In particular, two non-zero vectors 𝑢 and 𝑣 are orthogonal if
and only if 𝑢 · 𝑣 = 0.

Let’s adopt the arrow perspective and picture the vectors 𝑢,
𝑣 and𝑤 = 𝑣 − 𝑢:

48



Orthogonality

𝑢

𝑣

𝑤

𝜃

Let’s do a little computation,

𝑤 ·𝑤 = (𝑣 − 𝑢) · (𝑣 − 𝑢) = (𝑣 · 𝑣) − 2𝑢 · 𝑣 + (𝑢 · 𝑢).

We can refactor this equation using lengths,

‖𝑤 ‖2 = ‖𝑣 ‖2 + ‖𝑢‖2 − 2𝑢 · 𝑣 .

But the Law of Cosines says that for a triangle with sides 𝑎,
𝑏, 𝑐 with angle 𝜃 opposite to 𝑐 , the following identity must
hold:

𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos𝜃,

hence the conclusion follows.

We often denote that two non-zero vectors are orthogonal
with the notation 𝑢 ⊥ 𝑣 . Whenever the zero vector may be
involved, we will continue to use this notation implying that
the dot product is zero.

5.3 Orthogonal spaces

Vectors can be orthogonal to one another, but also vector
subspaces. We say that two vector subspaces 𝑈 and 𝑉 of
R𝑛 are orthogonal, denoted 𝑈 ⊥ 𝑉 , if any vector in 𝑈 is
orthogonal to any vector in 𝑉 .
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The set of all vectors that are othogonal to each vector in a
given vector space𝑈 is referred to as the orthogonal space or
orthogonal complement of𝑈 and denoted𝑈 ⊥:

𝑈 ⊥ = {𝑣 ∈ R𝑛 | 𝑣 · 𝑢 = 0 for each 𝑢 ∈ 𝑈 }

We abuse a little this notation and refer to the orthogonal
space of a vector 𝑢, denoted 𝑢⊥, as the orthogonal space of
the vector space spanned by 𝑢:

span(𝑢)⊥ = {𝑣 ∈ R𝑛 | 𝑣 · 𝑢 = 0}.

5.3.1 Example

Given a matrix 𝐴, its null space 𝑁 (𝐴) can be seen as 𝑅(𝐴)⊥,
the orthogonal complement of the row space of 𝐴. Similarly,
the null space of its transpose 𝑁 (𝐴𝑡 ) can be seen as 𝐶 (𝐴)⊥,
the orthogonal complement of the column space of 𝐴.

Proposition 17. Suppose that 𝑢1, . . . , 𝑢𝑘 is a linearly inde-
pendent set from the vector space𝑉 and that dim(𝑉 ) = 𝑛 > 𝑘 .
Then

dim(span(𝑢1, . . . , 𝑢𝑘 )⊥) = 𝑛 − 𝑘

In other words, we can �nd a linearly independent set𝑢𝑘+1, . . . , 𝑢𝑛
that are orthogonal to span(𝑢1, . . . , 𝑢𝑘 ). Moreover {𝑢1, . . . , 𝑢𝑛}
is a basis of 𝑉 .

If we arrange 𝑢1, . . . , 𝑢𝑘 as columns in a 𝑛 × 𝑘 matrix 𝐴, ap-
plying Theorem 1 to 𝐴 then we know that

𝑛 = dim(𝑁 (𝐴𝑡 )) + rank(𝐴𝑡 ) ⇒ dim(𝑁 (𝐴𝑡 )) = 𝑛 − 𝑘
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where all vectors in 𝑁 (𝐴𝑡 ) are orthogonal to 𝑢1, . . . , 𝑢𝑘 , the
columns of 𝐴. So we can pick 𝑢𝑘+1, . . . , 𝑢𝑛 some basis of
𝑁 (𝐴𝑡 ). If𝑢1, . . . , 𝑢𝑛 were not linearly independent then there
would be a linear combination

𝑘∑︁
𝑖=1

𝜆𝑖𝑢𝑖 +
𝑛∑︁

𝑗=𝑘+1
𝜆 𝑗𝑢 𝑗 =

→
0 .

Not all 𝜆𝑘+1, . . . , 𝜆𝑛 can be zero, otherwise 𝑢1, . . . , 𝑢𝑘 would
not be linearly independent, therefore

𝑘∑︁
𝑖=1

𝜆𝑖𝑢𝑖 +𝑤 =
→
0 with𝑤 ∈ 𝑁 (𝐴𝑡 ),𝑤 ≠

→
0 .

But since𝑤 is orthogonal to the 𝑢1, . . . , 𝑢𝑘 we can apply the
dot-product-trick:

𝑤 ·
(

𝑘∑︁
𝑖=1

𝜆𝑖𝑢𝑖

)
+𝑤 ·𝑤 = 0 ⇒ ‖𝑤 ‖2 = 0,

which contradicts the fact that {𝑢1, . . . , 𝑢𝑛} are linearly de-
pendent.

5.4 Orthogonal sets of vectors

A set of non-zero𝑛-vectors {𝑣1, . . . , 𝑣𝑘 } is said to be an orthog-
onal set if every vector is orthogonal to every other vector
in the set:

𝑣𝑖 ⊥ 𝑣 𝑗 whenever 𝑖 ≠ 𝑗 .

Orthogonal sets are a particularly easy type of set to han-
dle. We have previously discussed linear independence, a
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property whereby every element of the set provides some
�lling-up of the vector space that none of the other elements
can provide either on their own or combined. One would
intuitively think that orthogonality would bear some rela-
tionship with linear independence because, in the end of the
day, what �lling-up can be more Orthogonal sets are linear-
lye�cient than adding orthogonal vectors to the collection?

In fact we can prove that for orthogonal sets linear indepen-
dence is guaranteed.

Proposition 18. Orthogonal sets are linearly independent.

Suppose that 𝑢1, . . . , 𝑢𝑘 are non-zero and orthogonal to each
other. If they were linearly dependent, there would be scalars
𝜆1, . . . , 𝜆𝑘 , not all zero, such that

𝜆1𝑣1 + . . . + 𝜆𝑘𝑣𝑘 =
→
0 .

Relabeling if necessary, suppose that 𝜆1 ≠ 0. Doing dot
product of the linear combination with 𝑣1 we get:

0 = (𝜆1𝑣1+. . .+𝜆𝑘𝑣𝑘 )·𝑣1 = 𝜆1(𝑣1·𝑣1)+. . .+𝜆𝑘 (𝑣𝑘 ·𝑣1) = 𝜆1‖𝑣1‖2

since 𝑣𝑖 · 𝑣1 = 0 for all 𝑖 ≠ 1, hence the only surviving term
is the 𝑣1 · 𝑣1 term. But this identity contradicts the fact that
all the vectors in the set were non-zero.

It follows that any generating set that is orthogonal is a basis:
an orthogonal basis. Moreover, if all the elements of a basis
has unit length, the basis can be referred to as an orthonormal
basis.
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From an orthogonal basis, say 𝑣1, . . . , 𝑣𝑛 , we can always an
orthonormal one, simply by rescaling each element according
to their length:

𝑢𝑖 =
1

‖𝑣𝑖 ‖
𝑣𝑖

In this case 𝑢1, . . . , 𝑢𝑛 would be an orthonormal basis.

Orthonormal bases can be really handy. For example, the
coordinates of a vector in an orthonormal basis can be recov-
ered by doing dot product against the elements of the basis
themselves.

Proposition 19. Given an 𝑛-vector 𝑣 and an orthonormal
basis V = {𝑣1, . . . , 𝑣𝑛}, the coordinates of 𝑣 in the basis V are
given by (𝑣1 · 𝑣, . . . , 𝑣𝑛 · 𝑣).

To prove it, suppose that 𝑣 = 𝜆1𝑣1 + . . . + 𝜆𝑛𝑣𝑛 . Then

𝑣𝑖 · 𝑣 = 𝜆𝑖𝑣𝑖 · 𝑣𝑖 = 𝜆𝑖 ‖𝑣𝑖 ‖2 = 𝜆𝑖 .

5.5 Orthogonal matrices

Orthonormal sets of vectors give rise to a special type of
matrix known as orthogonal matrices: these are square ma-
trices whose column vectors are mutually orthogonal and
have unit length. This makes inverting orthogonal matrices
an easy operation:

Proposition 20. If𝑄 is an orthogonal matrix, then𝑄−1 = 𝑄𝑡 .
In particular, det(𝑄) = ±1

53



Elements of Mathematics

If 𝑞𝑖 are the column vectors of 𝑄 , multiplying 𝑄𝑡𝑄 yields a
matrix that has 𝑞𝑖 · 𝑞𝑖 = 1 as elements in the diagonal and
𝑞 𝑗 · 𝑞𝑖 = 0 o� the diagonal, hence the identity matrix. Note
that this implies that the determinant must be either 1 or −1:

1 = det(I) = det(𝑄𝑡𝑄) = det(𝑄𝑡 )det(𝑄) = (det(𝑄))2

In R2 the repertoire of orthogonal transformations is rela-
tively limited: they can be either of the form[

−1 0
0 1

]
,

[
1 0
0 −1

]
or

[
cos𝜃 − sin𝜃
sin𝜃 cos𝜃

]
.

5.6 Orthogonal projection onto a vector

Consider two 𝑛-vectors 𝑢 and 𝑣 . The orthogonal projection
of 𝑣 onto span(𝑢) is another vector 𝑝 (𝑣) that satis�es the
following two conditions:

• 𝑝 (𝑣) ∈ span(𝑢)

• 𝑣 − 𝑝 (𝑣) ⊥ 𝑢

How can we compute 𝑝 (𝑣)? If 𝑣 ∈ span(𝑢) then 𝑝 (𝑣) = 𝑣 is
the trivial solution to the problem. So we can assume from
now on that 𝑣 ∉ span(𝑢). By the �rst condition, we know
that there is some scaling factor 𝜆 such that 𝑝 (𝑣) = 𝜆𝑢, so
we need to �nd 𝜆. Using this piece of information with the
second condition, we also know that (𝑣−𝜆𝑢) ·𝑢 = 0, implying
that

𝜆 =
𝑣 · 𝑢
𝑢 · 𝑢 ,
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leading to one possible form of the solution:

𝑝 (𝑣) = 𝑣 · 𝑢
𝑢 · 𝑢 𝑢.

What is the length of 𝑝 (𝑣)?

‖𝑝 (𝑣)‖ = 𝑣 · 𝑢
𝑢 · 𝑢 ‖𝑢‖ =

𝑣 · 𝑢
‖𝑢‖ = ‖𝑣 ‖ cos𝜃,

where 𝜃 is the angle formed by 𝑢 and 𝑣 .

We can also see that the projection onto 𝑢 is in fact a linear
transformation:

𝑝 (𝑣 +𝑤) =
( 𝑣 · 𝑢
𝑢 · 𝑢 + 𝑤 · 𝑢

𝑢 · 𝑢

)
𝑢 = 𝑝 (𝑣) + 𝑝 (𝑤)

𝑝 (𝛼𝑣) = 𝛼𝑣 · 𝑢
𝑢 · 𝑢 𝑢 = 𝛼

𝑣 · 𝑢
𝑢 · 𝑢 𝑢 = 𝛼𝑝 (𝑣)

So there must be a 𝑛 × 𝑛 matrix 𝑃 that gets the job done.
What matrix 𝑃 accomplishes it?

𝑝 (𝑣) = 𝑣 · 𝑢
𝑢 · 𝑢 𝑢 =

1
‖𝑢‖2𝑢𝑢

𝑡𝑣

Therefore,

𝑃 =
1

‖𝑢‖2𝑢𝑢
𝑡 =

(
𝑢

‖𝑢‖

) (
𝑢

‖𝑢‖

)𝑡
works as intented.

Note that the expression of 𝑃 simpli�es quite a bit if 𝑢 has
unit length ‖𝑢‖ = 1:

𝑃 = 𝑢𝑢𝑡

The projection 𝑝 (𝑣) of 𝑣 onto span(𝑢) is what 𝑣 needs to get
rid of to become orthgonal to 𝑢, i.e. 𝑝 (𝑣) is what we need to
substract from 𝑣 to render it orthogonal to 𝑢.
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5.7 Gram-Schmidt method

Given a vector space of interest 𝑉 , we are now concerned
about �nding an orthonormal basis of 𝑉 . Our raw materials
for this task will be some given basis V = 𝑣1, . . . , 𝑣𝑘 of 𝑉 ,
not necessarily orthogonal. Our strategy will be to go about
modifying the vectors of the given basis so that we end up
with another basis that is orthogonal.

5.7.1 Prunning

Before going to a general procedure, we �rst investigate how
to proceed in the simple case of two vectors of the plane R2.
Suppose that 𝑢 and 𝑣 are a basis of R2 and that 𝑢 and 𝑣 are
not orthogonal. How can we change one of the vectors, say
𝑣 , to obtain a new vector 𝑣 ′ in such a way that 𝑢 and 𝑣 ′ are
orthogonal?

We remove from 𝑣 what separates it from being orthogonal
to 𝑢. From the last section we now that this is precisely
the projection 𝑝 (𝑣) of 𝑣 onto span(𝑢). Therefore we can
conclude that:

𝑣 ′ = 𝑣 − 𝑝 (𝑣) = 𝑣 − 𝑣 · 𝑢
𝑢 · 𝑢 𝑢

is orthogonal to 𝑢. We have managed to prune the part of 𝑣
that was impeding orthogonality with 𝑢. This simple case
illuminates theway to transform any basis into an orthogonal
basis.
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5.7.2 The algorithm

Starting from a basis 𝑣1, . . . , 𝑣𝑘 of 𝑉 we will conduct a series
of steps to produce an orthonormal basis of 𝑉 : 𝑤1, . . . ,𝑤𝑛 .

Take
𝑤1 =

𝑣1

‖𝑣1‖
.

This will be the �rst element of the basis.

Now suppose that we have already computed the �rst 𝑖 ele-
ments of our orthonormal basis:𝑤1, . . . ,𝑤𝑖 . The next element
will be computed from 𝑣𝑖+1 by prunning everything that im-
pedes it to be orthogonal to each of the preceding members
of the basis:

𝑤 ′
𝑖+1 = 𝑣𝑖+1 − (𝑣𝑖+1 ·𝑤1)𝑤1 − . . . − (𝑣𝑖+1 ·𝑤𝑖)𝑤𝑖

then we convert it to a unit length vector:

𝑤𝑖+1 =
𝑤 ′
𝑖+1

‖𝑤 ′
𝑖+1‖

.

It is easy to check that at every step we are adding a vector
that is orthogonal to all the previously added vectors. Let’s
compute that𝑤 ′

𝑖+1 ·𝑤 𝑗 = 0 for all 1 ≤ 𝑗 ≤ 𝑖:

𝑤 ′
𝑖+1·𝑤 𝑗 = 𝑣𝑖+1·𝑤 𝑗−(𝑣𝑖+1·𝑤1) (𝑤1·𝑤 𝑗 )−. . .−(𝑣𝑖+1·𝑤𝑖) (𝑤𝑖 ·𝑤 𝑗 ).

Observe that all the terms with𝑤𝑘 ·𝑤 𝑗 with 𝑘 ≠ 𝑗 must be
zero. The only remaining terms are

𝑣𝑖+1 ·𝑤 𝑗 − (𝑣𝑖+1 ·𝑤 𝑗 ) (𝑤 𝑗 ·𝑤 𝑗 ) = 𝑣𝑖+1 ·𝑤 𝑗 − 𝑣𝑖+1 ·𝑤 𝑗 = 0.
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Therefore the algorithm works as intended.

Since we can apply this method to any given basis of any
vector space, it is guaranteed that:

Proposition 21. Any vector space has an orthonormal basis.

5.8 Orthogonal projection: general case

Consider now an orthonormal basis U = {𝑢1, . . . , 𝑢𝑘 } of a
subspace of 𝑉 and a vector 𝑣 ∈ 𝑉 . The orthogonal projection
of 𝑣 onto span(U ) is another vector 𝑝 (𝑣) that satis�es the
following conditions:

• 𝑝 (𝑣) ∈ span(U )

• 𝑣 − 𝑝 (𝑣) ⊥ 𝑢 for all 𝑢 ∈ span(U )

We can de�ne an orthonormal basis of 𝑉 by orthogonal com-
pletion of U , i.e. adding new unit length vectors 𝑢𝑘+1, . . . , 𝑢𝑛
that are all orthogonal to U . The resulting set U ′ = U ∪
{𝑢𝑘+1, . . . , 𝑢𝑛} must be an orthonormal basis of 𝑉 . What
would be the e�ect of projecting the vectors of U ′ onto
span(U )? The matrix of the resulting linear transformation
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in coordinates of U ′ would be the following 𝑛 × 𝑛 matrix:

𝑃 =



1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

...
. . .

...
...

...
...

0 0 . . . 1 0 . . . 0
0 0 . . . 0 0 . . . 0
...

... . . .
...

...
. . .

...

0 0 . . . 0 0 . . . 0


implying that 𝑃𝑢𝑖 = 𝑢𝑖 as long as 1 ≤ 𝑖 ≤ 𝑘 and 𝑃𝑢𝑖 =

→
0

otherwise.

If 𝑄 is the orthogonal matrix that has the 𝑢 𝑗 ’s as columns,
we can recover the matrix of the projection in the canonical
basis, as we saw previously, as follows:

𝑃 = 𝑄𝑃𝑄𝑡

Note that since the last 𝑛 −𝑘 columns and rows of 𝑃 are zero,
the last 𝑛 − 𝑘 columns of 𝑄 have no relevance on the results
and we can get rid of them.

Proposition 22. The matrix 𝑃 of the orthogonal projection
onto a vector subspace 𝑆 of R𝑛 is given by

𝑃 = 𝑈𝑈 𝑡

where𝑈 is the matrix with an orthonormal basis of 𝑆 as column
vectors.

We can also recover a general expression when we are given
just an ordinary basis of 𝑆 , under no orthonormality assump-
tion whatsoever, say𝑤1, . . . ,𝑤𝑘 . Suppose that𝐴 is the matrix
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with𝑤 𝑗 as columns. The key observation to come up with it
is that there is an invertible 𝑘 ×𝑘 matrix Λ such that𝑈 = 𝐴Λ
has an orthonormal set as column vectors: we can think of
the columns ofΛ as linear combination recipes telling us how
to combine the columns of 𝐴 to generate an orthonormal
basis of 𝑆 .

Hence the projection matrix must be:

𝑃 = 𝑈𝑈 𝑡 = (𝐴Λ) (𝐴Λ)𝑡 = 𝐴ΛΛ𝑡𝐴𝑡

Amazingly, the matrix ΛΛ𝑡 can be recovered entirely from
𝐴!

ΛΛ𝑡 = (𝐴𝑡𝐴)−1

Since 𝐴 = 𝑈Λ−1 we can see that

(𝐴𝑡𝐴)−1 = ((𝑈Λ−1)𝑡 (𝑈Λ−1))−1 = ((Λ−1)𝑡𝑈 𝑡𝑈Λ−1)−1

Using the fact that𝑈 𝑡𝑈 = I, it follows that:

(𝐴𝑡𝐴)−1 = ((Λ−1)𝑡Λ−1)−1 = Λ((Λ−1)𝑡 )−1 = ΛΛ𝑡

Proposition 23. The matrix 𝑃 of the orthogonal projection
onto a vector subspace 𝑆 of R𝑛 is given by

𝑃 = 𝐴(𝐴𝑡𝐴)−1𝐴𝑡

where 𝐴 is the matrix with any basis of 𝑆 as column vectors.
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5.9 TL;DR

When we represent vectors as arrows, we can study their
geometric properties, like the length or the angles formed
between vectors. Here we introduce the dot product, yet
another operation that takes a pair of vectors as input and re-
turns a number: when this number is zero it signals that the
vectors are orthogonal to each other. With this simple com-
putational tool we can then go about studying orthgonal sets
of vectors and orthogonal matrices. Orthgonality is a particu-
larly strong condition that enforces linear independence. On
the other hand, the changes of coordinates between orthogo-
nal bases turn out to be particularly simple to calculate. We
describe an algorithm, known as Gram-Schmidt, that takes
as input a basis and returns an orthgonal basis spanning the
same vector space. Using everything we learned, we end
up by �guring out a completely general expression for the
matrix of the orthogonal projection onto any given vector
subspace.
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