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Dissecting matrices
with Gauss-Jordan

elimination

One ring to rule them all,
one ring to nd them,
one ring to bring them all
and in the darkness bind them.

Sauron

3.1 An algorithm to rule them all

The aim of this chapter is to present an algorithm, known as
Gauss-Jordan elimination, that takes a matrix 𝐴 as input and
returns: i) a basis of 𝐶 (𝐴), ii) a basis of 𝑁 (𝐴).
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3.2 Elementary column operations

Given an 𝑛 ×𝑚 matrix 𝐴, we will denote its 𝑗-th column as
𝐴 𝑗 . We dene the elementary column operations as either of
the following ways to transform 𝐴:

• Rearrange (permute) the columns of 𝐴

• Replace 𝐴 𝑗 by 𝐴 𝑗 + 𝜆𝐴𝑖 , with 𝑖 ≠ 𝑗 and 𝜆 ∈ R

• Replace 𝐴 𝑗 by 𝜆𝐴 𝑗 , with 𝜆 ≠ 0

Interestingly, when we apply an elementary column oper-
ation on a matrix 𝐴, under the hood we are multiplying 𝐴
by some matrix 𝐸 on the right. Can you tell which matrices
correspond to which operations?

Proposition 7. If 𝐴′ is obtained from 𝐴 by applying an ele-
mentary column operation, then 𝐶 (𝐴) = 𝐶 (𝐴′).

3.3 Reduced column echelon form

We need to introduce a couple of technical denitions that
will help us be precise about the workings of our master
algorithm.

We dene the leading index of a column of𝐴 to be the smallest
index with a non-zero entry, in case the column is not the
zero vector, or ∞ if the column is zero. For a matrix 𝐴, we
will denote the leading index of the 𝑗-th column as ℓ𝑗 (𝐴).

The leading entry of a non-zero column is simply the entry
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corresponding to the leading index.

3.3.1 Example

The matrix

𝐴 =


1 0 0
2 5 0
3 6 0
4 7 8


has leading indices ℓ1(𝐴) = 1, ℓ2(𝐴) = 2 and ℓ3(𝐴) = 4 with
corresponding leading entries 1, 5 and 8, respectively.

An 𝑛 ×𝑚 matrix is said to be in column echelon form if its
leading indexes have the following pattern:

ℓ1(𝐴) < . . . < ℓ𝑘 (𝐴) = . . . = ℓ𝑚 (𝐴) = ∞,

for some 𝑘 ≤ 𝑚.

A matrix is said to be in reduced column echelon form if the
following conditions hold:

• It is in column echelon form;

• The leading entries are 1;

• The leading entries are the only non-zero entries in
their respective rows.

The matrix 𝐴 in the previous example is in column echelon
form, but not in reduced column echelon form.
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3.3.2 Example

The matrix

𝐵 =


1 0 0
0 1 0
2 0 0
0 0 1


is in reduced column echelon form.

3.4 Gauss-Jordan Elimination

3.4.1 Set-up (initialization)

We will stack our input matrix𝐴 on top of an identity matrix
with as many columns as 𝐴 has:

𝐴

I

3.4.2 Steps (loop)

At each step of the algorithm we will apply some elementary
column operation to 𝐴 and the bottom matrix simultane-

30



Dissecting matrices with Gauss-Jordan elimination

ously.

𝐴𝑘

𝐸𝑘 −→

𝐴𝑘+1

𝐸𝑘+1

3.4.3 Goal (stop condition)

The goal is to reach a transform of 𝐴 (top matrix) in column
echelon form. Depending on the type of problem we want
to addess it might be preferable to reach a reduced echelon
form instead of a (vanilla) echelon form.

3.5 Interpreting the result

The output of the algorithm is rich in information about the
matrix 𝐴.

Proposition 8. Suppose that 𝐴 is an 𝑛 ×𝑚 matrix, 𝐴∗ is an
echelon form obtained from 𝐴 by repeatedly applying elemen-
tary column operations and 𝐸 is the matrix obtained from I by
applying the same operations. Then the following holds:

• 𝐴∗ = 𝐴𝐸

• The non-zero columns of 𝐴∗ are a basis of 𝐶 (𝐴).

• If 𝐴∗ has zero columns, the corresponding columns of 𝐸
are a basis of 𝑁 (𝐴).
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• 𝐸 = 𝐸1𝐸2 . . . 𝐸𝑠 where 𝐸𝑖 is the matrix corresponding to
the elementary column operation used in step 𝑖 .

In view of all this, we can already state one of the most
important results of the course.

Theorem 1 (Fundamental Theorem of Linear Algebra). For
any 𝑛 ×𝑚 matrix 𝐴,

𝑚 = rank(𝐴) + dim(𝑁 (𝐴))

3.6 Inverse of a matrix

When 𝐴 is a square matrix, we may ask whether there is
another matrix 𝐵 of the same size, such that 𝐴𝐵 = I. As a
matter of fact, if such a matrix exists, it is the only matrix
with this property and also 𝐵𝐴 = Imust hold, too (why?). We
call such matrix 𝐵 the inverse of 𝐴 and we typically denote
it by 𝐴−1.

We say that a square matrix𝐴 is invertible if it has an inverse.

Proposition 9. If 𝐴 is 𝑛 × 𝑛 invertible, then rank(𝐴) = 𝑛.

Since 𝐴𝐴−1 = I we can see that the columns of I, which are
a basis of R𝑛 , can be expressed as linear combinations of the
columns of𝐴, so the columns of𝐴 must also be a basis of R𝑛 ,
then rank(𝐴) = 𝑛.

The square matrices with this property are known as full-
rank.

Interestingly, Gauss-Jordan elimination gives us a construc-
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tive way to check if a square matrix is 𝐴 invertible and com-
pute 𝐴−1 in one go.

Proposition 10 (Inverses via Gauss-Jordan Elimination).
Suppose that we do Gauss-Jordan elimination on 𝐴 until we
get a reduced echelon form 𝐴∗ and transformation matrix
𝐸. Then if 𝐴 is full rank, then 𝐴∗ is the identity matrix and
𝐸 = 𝐴−1.

Then if 𝐴 is a square, full-rank matrix, we can compute the
inverse.

Proposition 11. Given a square matrix 𝐴 of size 𝑛, the fol-
lowing are equivalent:

• 𝐴 is invertible

• 𝐴 is full rank

• The columns of 𝐴 are a basis of R𝑛

• The rows of 𝐴 are a basis of R𝑛

3.6.1 Remark

If two square matrices of the same size 𝐴, 𝐵 are invertible,
then their product is invertible, too:

(𝐴𝐵)−1 = 𝐵−1𝐴−1

If a matrix𝐴 is invertible, then its transpose𝐴𝑡 is also invert-
ible and, moreover

(𝐴𝑡 )−1 = (𝐴−1)𝑡 .
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The elementary column operation matrices are all invertible.
Consequently, the Gauss-Jordan transformation matrices 𝐸
are also invertible, since they are products of elementary
column operation matrices.

3.6.2 Remark

Multiplying some vector by the inverse of a matrix is equiva-
lent to solve a system of linear equations. Whenever you are
trying to solve a system of linear equations it should ring a
bell that an inverse matrix multiplication is involved.

3.7 The CR factorization

As we have just seen, for any 𝑛 × 𝑚 matrix 𝐴 of rank 𝑘 ,
we have that 𝐴∗ = 𝐴𝐸 where 𝐴∗ is an 𝑛 ×𝑚 echelon form,
possibly with the last𝑚 − 𝑘 columns zero, and 𝐸 is an𝑚 ×𝑚

invertible matrix.

Because 𝐸 is invertible, we can write

𝐴 = 𝐴∗𝐸−1.

Now, the result of this product will be exactly the same if we
get rid of the zero columns of 𝐴∗ and we also get rid of the
last𝑚 − 𝑘 rows of 𝐸−1. If we denote 𝐶 the pruned version
of 𝐴∗ and 𝑅 the pruned version of 𝐸−1, we have proved the
following:

Proposition 12. Any matrix 𝐴 with rank 𝑘 can be expressed
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as a product of matrices 𝐶 ∈ R𝑛×𝑘 and 𝑅 ∈ R𝑘×𝑚 :

𝐴

(𝑛×𝑚)

= 𝐶

(𝑛×𝑘)

𝑅

(𝑘×𝑚)

In particular, the columns of𝐶 are a basis of𝐶 (𝐴) and the rows
of 𝑅 are a basis of 𝑅(𝐴).

3.8 The determinant

The determinant of a square matrix 𝐴, denoted det(𝐴), is a
number that can be dened recursively as follows.

• If 𝐴 is a 1 × 1 matrix [𝑎11], det(𝐴) = 𝑎11

• If 𝐴 is an 𝑛 × 𝑛 matrix, then for any 1 ≤ 𝑗 ≤ 𝑛

det(𝐴) =
𝑛∑︁
𝑖=1

𝑎𝑖 𝑗 (−1)𝑖+𝑗det(𝐴𝑖 𝑗 )

where 𝐴𝑖 𝑗 denotes the (𝑛 − 1) × (𝑛 − 1) matrix derived
from 𝐴 where the 𝑖-th row and 𝑗-th column have been
removed.

The determinant has many interesting properties and can
be very handy to solve many linear algebra questions. For
the time being, we will underscore its importance to assert
linear independence.
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Proposition 13. Given a square matrix 𝐴, the following are
equivalent:

• det(𝐴) ≠ 0

• 𝐴 is full rank

• 𝐴 is invertible

Here are a bunch of interesting properties of the determinant:

Proposition 14. Let 𝐴 and 𝐵 be square matrices of the same
size:

• The determinant is linear column by column (and row
by row).

• det(𝐴𝐵) = det(𝐴)det(𝐵)

• det(𝐴𝑡 ) = det(𝐴)

• If 𝐴 is invertible, det(𝐴−1) = 1/det(𝐴)

• If 𝐴𝜎 is the matrix obtained by rearranging the columns
(or rows) of 𝐴 with a permutation 𝜎 , then

det(𝐴𝜎 ) = sgn(𝜎)det(𝐴),

where sgn(𝜎) is the sign of the permutation 𝜎 .

That the determinant is linear column by column means that:

• It preserves sums column by column:

det( [. . . | 𝑎 + 𝑏 | . . .]) =
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= det( [. . . | 𝑎 | . . .]) + det( [. . . | 𝑏 | . . .])

• It preserves scaling column by column:

det( [. . . | 𝜆𝑎 | . . .]) = 𝜆 det( [. . . | 𝑎 | . . .])

3.9 TLDR;

We developed a technique that is very useful to study any
matrix, known as Gauss-Jordan elimination. In its essence,
the method transforms step by step our input matrix until we
get to another matrix from which the dependence structure
of the input matrix is much easier to read: at each step we are
only allowed to use transformations that do not change the
column space. With this method we can easily get a complete
characterization of the column space and the null space. In
addition, this method gives us, free of charge, a method
to compute the inverse of input invertible square matrices.
Square matrices are an important particular case, where we
can also resort to other, more sophisticated techniques, like
the determinant, that will lets us automatically read whether
the input matrix is full rank or not.
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