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Matrices

Certainly the best times were when I was alone
with mathematics, free of ambition and pretense,
and indi�erent to the world.

Robert Langlands

2.1 Matrix basics

Matrices are a useful abstractions of the notion of rectangular
tables with numerical entries.

We will represent a matrix 𝐴 with 𝑛 rows and𝑚 columns
like this: 

𝑎11 𝑎12 . . . 𝑎1𝑚
𝑎21 𝑎22 . . . 𝑎2𝑚
...

...
. . .

...

𝑎𝑛1 𝑎𝑛2 . . . 𝑎𝑛𝑚


Note that each entry has two subindices: 𝑎𝑖 𝑗 represents the
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entry that sits in the 𝑖-th row and 𝑗-th column.

We will denote the set of all matrices with 𝑛 rows and 𝑚

columns as 𝑛 ×𝑚 matrices or R𝑛×𝑚 .

A matrix is square if it has the same number of rows as
columns.

2.2 Operations

Sum: two 𝑛 ×𝑚 matrices 𝐴 and 𝐵 can be summed together
to give another 𝑛 ×𝑚 matrix 𝐶 , doing the sum component
by component:

𝐴 + 𝐵 = 𝐶

where 𝑐𝑖 𝑗 = 𝑎𝑖 𝑗 + 𝑏𝑖 𝑗

Scaling: given a scaling factor 𝛼 ∈ R and an 𝑛 ×𝑚 matrix 𝐴,
we can combine them to give another 𝑛 ×𝑚 matrix 𝐵:

𝛼𝐴 = 𝐵

where 𝑏𝑖 𝑗 = 𝛼𝑎𝑖 𝑗

Multiplication: matrices can be combined in yet another way
that we call matrix multiplication or product. There are two
odd things about this operation that you must be aware of:

• The order of multiplication is important.

• Two matrices𝐴, 𝐵 can be multiplied together – with𝐴
coming �rst in the multiplication order, 𝐵 coming sec-
ond – as long as the number of columns of𝐴 coincides
with the number of rows of 𝐵.
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2.3 How matrix multiplication works

We present four ways of computing matrix multiplication
that are equivalent, the reason of presenting several ways
being that in some contexts it may be much easier to think
in one way rather than any other.

Can you �gure out why these four ways are equivalent to
one another?

For the rest of the section, we will set a 𝑛 × 𝑘 matrix 𝐴 =

(𝑎𝑖 𝑗 ) and a 𝑘 ×𝑚 matix 𝐵 = (𝑏𝑖 𝑗 ) that we want to multiply
together to produce a matrix 𝐶 = 𝐴𝐵 = (𝑐𝑖 𝑗 ). Also it will be
convenient to denote 𝐴𝑡 the columns of 𝐴 and 𝐵𝑡 the rows
of 𝐵, more graphically:

𝐴 = [𝐴1 | 𝐴2 | . . . | 𝐴𝑘 ]

and

𝐵 =



𝐵1

𝐵2

...

𝐵𝑘


2.3.1 Rows versus columns

𝑐𝑖 𝑗 =

𝑘∑︁
𝑡=1

𝑎𝑖𝑡𝑏𝑡 𝑗

17



Elements of Mathematics

2.3.2 Columns

We can think of the result 𝐶 column by column

𝐶 = [𝐶1 | 𝐶2 | . . . | 𝐶𝑚]

where each column is obtained as

𝐶 𝑗 =

𝑘∑︁
𝑡=1

𝑏𝑡 𝑗𝐴𝑡 .

In other words, the columns of 𝐶 are expressed as linear
combinations of the columns of 𝐴.

2.3.3 Rows

We can think of the result 𝐶 row by row

𝐶 =



𝐶1

𝐶2

...

𝐶𝑛


where each row is obtained as

𝐶𝑖 =

𝑘∑︁
𝑡=1

𝑎𝑖𝑡𝐵𝑡

In other words, the rows of 𝐶 are expressed as linear combi-
nations of the rows of 𝐵.
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2.3.4 Columns versus rows

Finally, we can think of the result 𝐶 as being the sum of
matrices that result from multiplying the columns of 𝐴 with
the rows of 𝐵 – remember that 𝐴 has as many columns as 𝐵
has rows:

𝐶 = 𝐴1𝐵1 +𝐴2𝐵2 + . . . +𝐴𝑘𝐵𝑘 .

2.4 Transpose

Given an 𝑛 ×𝑚 matrix𝐴, we de�ne its transpose, denoted𝐴𝑡 ,
as the𝑚 × 𝑛 matrix whose rows are the columns of 𝐴 and
whose columns are the rows of 𝐴. Formally,

𝐴𝑡 = (𝑎𝑡𝑖 𝑗 )

where 𝑎𝑡𝑖 𝑗 = 𝑎 𝑗𝑖 .

When a square matrix 𝐴 is the same as its transpose 𝐴𝑡 we
say that 𝐴 is symmetric.

2.5 Column space

Given a matrix 𝐴 we will de�ne the column space of 𝐴 –
denoted 𝐶 (𝐴) – to be the vector space generated by the
columns of 𝐴 considered as vectors. In other words,

𝐴 = [𝑐1 | 𝑐2 | . . . | 𝑐𝑚]

then
𝐶 (𝐴) = span(𝑐1, 𝑐2, . . . , 𝑐𝑚)
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2.6 Row space

Given a matrix𝐴 we will de�ne the row space of𝐴 – denoted
𝑅(𝐴) – to be the vector space generated by the rows of 𝐴
considered as vectors. In other words,

𝐴 =



𝑟1

𝑟2

...

𝑟𝑛


then

𝑅(𝐴) = span(𝑟1, 𝑟2, . . . , 𝑟𝑛)

Note:

𝑅(𝐴𝑡 ) = 𝐶 (𝐴) and 𝐶 (𝐴𝑡 ) = 𝑅(𝐴).

2.7 Rank

The vector spaces 𝐶 (𝐴) and 𝑅(𝐴) may be very di�erent. For
one, for a 𝑛 ×𝑚 matrix, 𝐶 (𝐴) is a vector subspace of R𝑛 ,
whereas 𝑅(𝐴) is a vector subspace of R𝑚 . However, they
have something in common:

Proposition 5. Given a matrix𝐴, dim(𝐶 (𝐴)) = dim(𝑅(𝐴)).

To prove this important result we will put to work two of
the ways to look at matrix multiplication: by columns and
by rows, respectively. Assume 𝐴 is an 𝑛 ×𝑚 matrix and V =
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𝑣1, . . . , 𝑣𝑘 is a basis of 𝐶 (𝐴), where 𝑘 = dim(𝐶 (𝐴)). Since
each column of𝐴 can be expressed as a linear combination of
the elements of V , we can express the matrix 𝐴 as a product
𝐴 = 𝐶Λ of two matrices, where

𝐶 = [𝑣1 | . . . | 𝑣𝑘 ]

and Λ = (𝜆𝑖 𝑗 ) is a 𝑘 ×𝑚 satisfying

𝐴 𝑗 = 𝜆1𝑗𝑣1 + . . . + 𝜆𝑘 𝑗𝑣𝑘

for every 𝑗 = 1, . . . ,𝑚 (the column perspective of matrix
multiplication). If we look back at the identity 𝐴 = 𝐶Λ, this
time using the row perspective of matrix multiplication, we
can see that every row of 𝐴 can be expressed as a linear
combination of the 𝑘 row vectors of the matrix Λ. In other
words,

dim(𝑅(𝐴)) ≤ 𝑘 = dim(𝐶 (𝐴)) .
Since this inequality is completely general, we can now use
it with 𝐴𝑡 , the transpose of 𝐴, leading to

dim(𝑅(𝐴𝑡 )) ≤ dim(𝐶 (𝐴𝑡 ))

but since 𝑅(𝐴𝑡 ) = 𝐶 (𝐴) and 𝐶 (𝐴𝑡 ) = 𝑅(𝐴), this means that
also

dim(𝑅(𝐴)) ≥ dim(𝐶 (𝐴)) .

The rank of a matrix 𝐴 is de�ned as dim(𝐶 (𝐴)) or, equiva-
lently, dim(𝑅(𝐴)). We denote it as rank(𝐴).

2.7.1 Remark

You can think about the rank as counting the maximum size
of linearly independent sets made of rows (or columns) of 𝐴.
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2.8 Rank 1 matrices

What happens when we multiply a 1-column matrix times a
1-row matrix? If 𝐵 is an 𝑛 × 1 matrix, and𝐶 is a 1×𝑚 matrix,
the product 𝐴 = 𝐵𝐶 is an 𝑛 ×𝑚 matrix. What is rank(𝐴)?

If we adopt the column perspective, 𝐴 has as columns linear
combinations of the only column that 𝐵 has. In other words,
all the columns of𝐴 are rescaled versions of the only column
of 𝐵. We can then conclude that rank(𝐴) = 1.

It turns out that all rank 1 matrices can factorize as a product
of a single column and a single row matrices.

Proposition 6. For any 𝑛 ×𝑚 matrix 𝐴, rank(𝐴) = 1 if and
only if there are matrices 𝐵 ∈ R𝑛×1 and 𝐶 ∈ R1×𝑚 such that
𝐴 = 𝐵𝐶 .

In other words, all rank 1 matrices can be expressed as a
product of spaghetti matrices like this:

𝐴

(𝑛×𝑚)

= 𝐶

(𝑛×1)

𝑅

(1×𝑚)
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2.9 Matrices de�ne linear maps

Equipped with the idea of matrix multiplication, matrices
de�ne a particularly interesting type of numerical function
known as linear maps.

A linear map takes a vector and transforms it into another
vector, although not necessarily of the same size.

If we think of an𝑚-vector 𝑣 as a single column matrix and 𝐴
is an 𝑛 ×𝑚 matrix, we can then multiply 𝐴𝑣 giving another
single column matrix, that we can interpret as an 𝑛-vector.

Then we have de�ned a function

𝐹 (𝑣) = 𝐴𝑣

that satis�es the following two important properties that
characterize linear maps:

• 𝐹 (𝑣 +𝑤) = 𝐹 (𝑣) + 𝐹 (𝑤)

• 𝐹 (𝛼𝑣) = 𝛼𝐹 (𝑤)

Now imagine that there is another linear transformation 𝐺
with associated matrix 𝐵 and we want to do the composition
of 𝐹 with𝐺 , i.e. apply the transformation𝐺 after 𝐹 has been
applied:

𝐺 ◦ 𝐹 (𝑣) = 𝐺 (𝐹 (𝑣)) = 𝐺 (𝐴𝑣) = 𝐵(𝐴𝑣) = (𝐵𝐴)𝑣

As we can see, this is also a linear map, with associated
matrix 𝐵𝐴.
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2.9.1 Remark

Observe that if we apply𝐺 after 𝐹 , that the respective associ-
ated matrices get multiplied in the reverse order, i.e. 𝐵 goes
�rst, then 𝐴.

2.9.2 Remark

At this very moment we can interpret matrices both as data
and as data transformations.

2.10 Null space

Given an𝑛×𝑚matrix𝐴, we can de�ne yet another interesting
vector space, exploiting the above described interpretation
of 𝐴 as a linear transformation.

The null space of 𝐴, denoted 𝑁 (𝐴), is the vector space of all
vectors that are transformed to the zero-vector by means of
𝐴. In other words:

𝑁 (𝐴) = {𝑤 ∈ R𝑚 | 𝐴𝑤 =
→
0 }.

Can you tell why 𝑁 (𝐴) is a vector space at all?

2.11 TLDR;

Matrices can be thought of the mathematical abstraction of
tabular data. The rank of a matrix provides us a hint of the
amount of information, diversity or degrees of freedom that
the matrix conveys. We can sum, scale and multiply matrices
and we can think of several equivalent ways of conducting
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matrix multiplication. Why is matrix multiplication the way
it is? We will soon learn that it has a lot to do with the fact
that matrices can also be used, not only to represent data,
but also to represent a type of data transformation known
as linear transformations. Matrix multiplication must have
been one of the most exciting and far reaching ideas in the
history of mathematics.
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