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Vector spaces

The purpose of abstraction is not to be vague,
but to create a new semantic level in which one
can be absolutely precise.

Edsger W. Dijkstra

1.1 Vectors

1.1.1 Basic de�nitions

Vectors are tuples of numbers to which two types of opera-
tions can be applied: sum and scaling.

Vectors with 𝑛 components will be denoted 𝑛-vectors. We
will denote the set of all 𝑛-vectors as R𝑛 .

We will represent 𝑛-vectors either as vertical stacks of 𝑛
numbers put between brackets
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
𝑎1
𝑎2
...

𝑎𝑛


or between parentheses with comma-separated values

(𝑎1, 𝑎2, . . . , 𝑎𝑛)

Each number in the tuple will be referred to as an entry or
component of the vector

The zero-vector (0, 0, . . . , 0) will be represented as
→
0 .

1.1.2 Sum of vectors

Two 𝑛-vectors can be summed together to give another 𝑛-
vector, doing the numerical sum component by component:


𝑎1
𝑎2
...

𝑎𝑛


+


𝑏1
𝑏2
...

𝑏𝑛


=


𝑎1 + 𝑏1
𝑎2 + 𝑏2

...

𝑎𝑛 + 𝑏𝑛


.

1.1.3 Scaling

Given a number 𝛼 ∈ R, which we will often refer to as the
scaling factor, and an 𝑛-vector, we can combine the two to
produce another 𝑛-vector:
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𝛼


𝑎1
𝑎2
...

𝑎𝑛


=


𝛼𝑎1
𝛼𝑎2
...

𝛼𝑎𝑛


1.1.4 Graphical representation

Vectors can be represented in a Cartesian reference frame as
arrows with stem at the origin of the reference frame 𝑂 and
tip at the point that has Cartesian coordinates given by the
very entries of the vector:

𝑥

𝑦 [
2
2

]
[
3
1

]

From now on you can think of vectors either as tuples or as
arrows with stem at the origin in a Cartesian reference frame.
We will refer to those paradigms as the tuple perspective and
the arrow perspective.

Under the arrow perspective the sum of vectors follows the
so-called parallelogram rule. Here is a graphical summary of
the rule:
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𝑥

𝑦

𝑢 =

[
2
2

]

𝑣 =

[
2
0

]
𝑢 + 𝑣 =

[
4
2

]

The same applies if we want to substract vectors. In the end
of the day, substraction amounts to summation with a vector
that has been scaled by −1.

𝑥

𝑦

𝑤 =

[
4
2

]
𝑣 =

[
2
2

]

−𝑣 =

[
−2
−2

] 𝑤 − 𝑣 =

[
2
0

]

Under the arrow perspective, scaling turns the input vector
into an new stretched/contracted version, reversed if the
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scaling factor is negative.

1.1.5 Length of a vector

We de�ne the length of an 𝑛-vector 𝑢 = (𝑢1, . . . , 𝑢𝑛), denoted
‖𝑢‖, as the length of its associated arrow. Using Pythagoras
theorem, this can be given as

‖𝑢‖ =
√︁
𝑢21 + . . . + 𝑢2𝑛

Can you see why?

1.2 Vector Spaces

We will de�ne vector space as any collection of vectors 𝑉 ⊂
R𝑛 for some 𝑛 that satis�es the following conditions:

1.
→
0∈ 𝑉

2. If 𝑢, 𝑣 ∈ 𝑉 then 𝑢 + 𝑣 ∈ 𝑉

3. If 𝑢 ∈ 𝑉 then 𝜆𝑢 ∈ 𝑉 for any 𝜆 ∈ R

1.2.1 Examples of vector spaces

- The set R𝑛 of all 𝑛-vectors is a vector space for any 𝑛 ≥ 1.

- If 𝑆 is a subset of R𝑛 that satis�es the following linear equa-
tion:

𝑥1 + 𝑥2 + . . . + 𝑥𝑛 = 0

then it is a vector space.
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1.
→
0= (0, 0, . . . , 0) ∈ 𝑆 because 0 + 0 + . . . + 0 = 0

2. if 𝑎1 + 𝑎2 + . . . + 𝑎𝑛 = 0 and 𝑏1 + 𝑏2 + . . . + 𝑏𝑛 = 0 then
(𝑎1 + 𝑏1) + (𝑎2 + 𝑏2) + . . . + (𝑎𝑛 + 𝑏𝑛) = 0

3. if 𝑎1 + 𝑎2 + . . . + 𝑎𝑛 = 0 then 𝛼𝑎1 + 𝛼𝑎2 + . . . + 𝛼𝑎𝑛 = 0

- An homogenous linear equation is a linear equation that has
zero as independent term. A subset 𝑆 ⊂ R𝑛 satisfying any
system of homogeneous linear equations is a vector space.
For example the set of vectors (𝑥1, 𝑥2, 𝑥3) ∈ R3 that satisfy
the following system of homogenous linear equations

2𝑥1 + 𝑥2 − 𝑥3 = 0
𝑥2 + 𝑥3 = 0

−2𝑥1 + 2𝑥3 = 0

is a vector space. You can try to prove it, along the same
lines of the previous example, and convince yourself about
the general claim.

If 𝑉 is some vector space and 𝑆 ⊆ 𝑉 is yet another vector
space sitting inside𝑉 , we say that 𝑆 is a vector subspace of𝑉 .

1.3 Linear Combinations

Given vectors 𝑣1, 𝑣2, . . . , 𝑣𝑘 ∈ R𝑛 and scalars 𝜆1, 𝜆2, . . . , 𝜆𝑘 ,
we can combine them as follows

𝜆1𝑣1 + 𝜆2𝑣2 + . . . + 𝜆𝑘𝑣𝑘

to produce another vector.
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This way of combining the vectors by scaling them �rst, then
summing across all the resulting vectors, is known as a linear
combination.

1.3.1 Span

Given a collection of 𝑛-vectors 𝑣1, 𝑣2, . . . , 𝑣𝑘 we can de�ne a
new vector space taking the set of all possible linear combi-
nations of 𝑣1, 𝑣2, . . . , 𝑣𝑘 : we denote it span(𝑣1, 𝑣2, . . . , 𝑣𝑘 ).

Can you see why span(𝑣1, 𝑣2, . . . , 𝑣𝑘 ) is a vector space?

1.4 Linear independence

A set of vectors 𝑣1, 𝑣2, . . . , 𝑣𝑘 is a linearly independent set –
often we simply say that they are linearly independent – if
they are not linearly dependent. In other words, none of the
vectors of the set can be expressed as a linear combination
of the others.

There is an equivalent de�nition that is often more useful
for practical computation: a set of vectors 𝑣1, 𝑣2, . . . , 𝑣𝑘 is a
linearly independent set if and only if the only possible scalars
𝜆1, 𝜆2, . . . , 𝜆𝑘 that satisfy the equation

𝜆1𝑣1 + 𝜆2𝑣2 + . . . + 𝜆𝑘𝑣𝑘 =
→
0

are 𝜆1 = 𝜆2 = . . . = 𝜆𝑘 = 0.

A set of vectors is a linearly dependent set – often we simply
say that they are linearly dependent – if it is not a linearly
independent set, i.e., if some vector can be expressed as a
linear combination of the others.
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For example, the𝑛-vectors 𝑣1, 𝑣2, 𝑣3 form a linearly dependent
set if 𝑣2 = 2𝑣1 + 3𝑣3.

1.5 Generating set

Given a set of 𝑛-vectors V = {𝑣1, 𝑣2, . . . , 𝑣𝑘 }, we say that they
are a generating set of the vector space 𝑉 if

span(V ) = 𝑉 .

A collection of vectors U of 𝑉 is a minimal generating set of
𝑉 if it meets the following two conditions:

• U is a generating set of 𝑉 , i.e. span(U ) = 𝑉

• no subset of U can be a generating set of 𝑉

Minimal generating sets can be thought of as generating sets
where all possible redundancies have been already ruled out.
This might remind us of the idea of linear independence and
in fact both are very much related. It turns out that if we are
given a (�nite) generating set for a vector space 𝑉 we can
prune it repeatedly, one vector at a time, until we attain a
minimal generating set that must be a linearly independent
set.

Proposition 1. If a vector 𝑢𝑘 can be expressed as a linear
combination of the vectors 𝑢1, . . . , 𝑢𝑘−1 then

span(𝑢1, . . . , 𝑢𝑘−1) = span(𝑢1, . . . , 𝑢𝑘−1, 𝑢𝑘 )

Let’s assume that 𝑢𝑘 = 𝜆1𝑢1 + . . . + 𝜆𝑘−1𝑢𝑘−1. Then any
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vector 𝑣 in span(𝑢1, . . . , 𝑢𝑘−1, 𝑢𝑘 ) can be expressed as a linear
combination of 𝑢1, . . . , 𝑢𝑘−1. To prove it, suppose that 𝑣 =

𝛼1𝑢1 + . . . + 𝛼𝑘−1𝑢𝑘−1 + 𝛼𝑘𝑢𝑘 , then the following holds:

Proposition 2. If U is a minimal generating set, it must be
a linearly independent set.

To prove this we will employ a logical trick which consists
of proving the contrapositive version of the claim, i.e. we
will prove that if U is a linearly dependent set then it cannot
be a minimal generating set. If U is a linearly dependent
set, then some of its vectors, say 𝑢𝑘 , can be expressed as a
linear combination of the others. But this means that if we
remove 𝑢𝑘 from U the span of the remaining smaller vector
set U ′ = U \ {𝑢𝑘 } will continue to be the same – as per the
previous result.

Proposition 3. If U is a maximal linearly independent set
of 𝑉 , then U spans 𝑉 .

If U is a linearly independent set that does not span 𝑉 , it
means that there is at least a vector 𝑣 in𝑉 such that it cannot
be expressed as a linear combination of the vectors in U .
Therefore, we can create an even larger linearly independent
set U ′ = U ∪ {𝑣}, meaning that U was not maximal.

1.6 Basis of a vector space

Minimal generating sets are also known as bases (plural form
of basis).

Taking into account everything that we have discussed so far,
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it is easy to check that a set of vectors V = {𝑣1, 𝑣2, . . . , 𝑣𝑑 } is
a basis of the vector space 𝑉 when the following conditions
hold:

1. V is a linearly independent set;

2. V is a generating set of 𝑉 , i.e. span(V ) = 𝑉 .

And conversely, if the conditions 1 and 2 hold, then the set
V must be a basis of 𝑉 . So we can take this conditions as an
alternative de�nition of basis of a vector space.

1.6.1 Examples

- Canonical basis ofR3 𝑒1 = (1, 0, 0), 𝑒2 = (0, 1, 0), 𝑒3 = (0, 0, 1)

- Canonical basis of R𝑛 (𝑒𝑖) 𝑗 = 𝛿𝑖 𝑗 where 𝛿𝑖 𝑗 = 1 when 𝑖 = 𝑗

and 𝛿𝑖 𝑗 = 0 otherwise.

- Vector spaces have many bases (in�nitely many).

Can two bases have a di�erent number of vectors? Somewhat
suprisingly, the answer is no.

Proposition 4. Vector spaces have several (in�nitely many)
bases, but all the bases for a given vector space have the same
number of elements.

We will reason by contradiction. Suppose that we could
�nd two basis of 𝑉 with di�erent number of elements, U =

{𝑢1, . . . , 𝑢𝑛} and V = {𝑣1, . . . , 𝑣𝑚} with 𝑛 < 𝑚. Since both
sets are bases, both span 𝑉 .
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Given the fact thatU spans𝑉 , 𝑣1 can be expressed as a linear
combination of the elements of U :

𝑣1 = 𝜆1𝑢1 + . . . + 𝜆𝑛𝑢𝑛

Not all the coe�cients can be zero, because 𝑣1 ≠
→
0 , since it

is part of the linearly independent set V . We can assume
𝜆1 ≠ 0 – reindeixing if necessary – which means that we can
express 𝑢1 as a linear combination of

U1 = {𝑣1, 𝑢2, . . . , 𝑢𝑛}

(why?) which in turn implies that U1 spans 𝑉 .

Nowwe claim that we can continue to replace elements ofU
by elements of V and yet have a generating set of𝑉 . Imagine
that we have accomplished a generating set of𝑉 of this form:

U𝑘 = {𝑣1, . . . , 𝑣𝑘 , 𝑢𝑘+1, . . . , 𝑢𝑛}.

Since this is a generating set of 𝑉 , we can express 𝑣𝑘+1 as a
linear combination of the elements of U𝑘 :

𝑣𝑘+1 = 𝜇1𝑣1 + . . . + 𝜇𝑘𝑣𝑘 + 𝛼𝑘+1𝑢𝑘+1 + . . . + 𝛼𝑛𝑢𝑛

Not all the coe�cients 𝛼𝑖 can be zero, because that would
imply that V is a linearly dependent set, so we can assume
𝛼𝑘+1 ≠ 0 – reindexing if necessary – which means that we
can express 𝑢𝑘+1 as a linear combination of

U𝑘+1 = {𝑣1, . . . , 𝑣𝑘+1, 𝑢𝑘+2, . . . , 𝑢𝑛}

which in turn implies that U𝑘+1 spans 𝑉 .

11



Elements of Mathematics

If we continue to replace elements of U by elements of V
until we run out of elements of U , we will reach to that
conclusion that the set {𝑣1, . . . , 𝑣𝑛} spans 𝑉 , but this is in
contradicion with the fact that V = {𝑣1, . . . , 𝑣𝑚} is a basis
with 𝑛 < 𝑚.

This common number of elements in any basis of a given
vector space 𝑉 is known as the dimension of 𝑉 and it is
denoted dim(𝑉 ).

1.6.2 Coordinates of a vector in a basis

Consider a basis V = {𝑣1, . . . , 𝑣𝑛} of a vector space 𝑉 and a
vector 𝑣 ∈ 𝑉 . Because V is a basis, we know two things:

• because V spans 𝑉 , 𝑣 can be expressed as a linear
combination of the elements of V ;

• becauseV is a linearly independent set, there is atmost
one way to express a vector as a linear combination of
the elements of V .

It follows that every vector of𝑉 can be expressed, in a unique
way, as a linear combination of the elements of V . In other
words, if

𝑣 = 𝜆1𝑣1 + . . . + 𝜆𝑛𝑣𝑛

then (𝜆1, . . . , 𝜆𝑛) completely identi�es 𝑣 if we know what is
the basis we refer to and the order in which we consider the
elements of the basis. Can you tell why?

The scalars 𝜆1, . . . , 𝜆𝑛 are referred to as the coordinates of 𝑣
in the basis V .
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Note that, although we did not talk about it, our default
representation of vectors correspond to their coordinates in
the canonical basis C = 𝑒1, . . . , 𝑒𝑛 . The entries of a vector
are its coordinates in the canonical basis.

1.7 TLDR;

Vectors are tuples with numeric entries that can represent
data from a tabular environment – rows or columns of some
dataframe. Vectors can be scaled and vectors of equal size
can summed together. Using this two operations we can
de�ne linear combinations, which gives a way to combine a
�nite collection of vectors into a new vector.

We like to think about vectors as making part of collections
known as vector spaces. Vector spaces arise naturally in a
number of common scenarios like when we try to solve a
system of linear equations or when we try to assert depen-
dencies between rows or columns of data. The dimension of
a vector space is a measure of the size of the vector space, ac-
counting for how big linearly independent sets �tting inside
the vector space can be. Intuitively, the dimension of a vector
space reminds us of how much information or diversity or
degrees of freedom the vector space comprises.
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