
EXERCISES: SESSION 3

1. Elementary column operations can be accomplished by matrix multiplica-
tion with suitable matrices. Suppose we have some 4 × 3 input matrix A. Find
out which elementary column operations are accomplished after doing the matrix
multiplication AE, for the following matrices E:

(1)

E =

 1 −2 0
0 1 0
0 0 1


(2)

E =

 1 0 0
0 1 0
0 0 3


(3)

E =

 1 0 0
0 0 1
0 1 0


2. Compute the inverse of the matrix

A =

[
1 3
3 1

]
using Gauss-Jordan elimination.

3. Let A ∈ Rn×n be a square matrix. We say that R is a right-inverse of
A if AR = Idn×n. Analogously, we say that L is a left-inverse matrix of A if
LA = Idn×n.

(1) What are the sizes of R and L, respectively?
(2) Show that, whenever they exist, the left and right inverses are unique.
(3) Show that if R and L are right and left inverses of A ∈ Rn×n, respectively,

then R = L.

4. Compute the inverse of the matrix

A =
1

2

 1 0 −
√

3
0 1 0√
3 0 1


using Gauss-Jordan elimination.
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5. Let

A =

 −4 2 0
2 −1 0
0 1 1

 .
Let fA : R3 → R3 be the linear map defined as fA(v) = Av.

(1) What is the rank of the matrix A? Justify your answer.
(2) Let {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)} be the canonical basis of R3.

Compute f(e1), f(e2) and f(e3).
(3) Give a basis of the vector subspace S ⊂ R3 generated by f(e1), f(e2), f(e3).

6. Let

M =

[
1√
5

2√
5

2√
5
− 1√

5

]
.

(1) How can you know whether M is invertible? Justify your answer.
(2) Compute M−1 using Gauss-Jordan elimination.
(3) Does the linear map f : R2 → R2 defined by M preserve orientation?
(4) How does the linear map f transform areas?

7. Determinants are compatible with matrix multiplication, in the sense that if
A,B ∈ Rn×n are square matrices, then det(AB) = det(A) det(B). Consider the
matrices:

A =

 1 0 −3
0 2 2
0 0 7

 B =

 2 1 1
0 1 −1
0 0 −2


(1) Using the recursive definition of determinant, reason why the determinant

of a diagonal matrix is the product of the entries in the diagonal, i.e. if
D = diag(λ1, . . . , λn) then det(D) = λ1 · . . . · λn.

(2) Compute the determinant of the identity matrix.
(3) Notice that the matrices A and B given above satisfy that all their entries

below the diagonal are zero: matrices satisfying this condition are known
as “upper triangular” matrices. Reason why the determinant of an upper
triangular matrix is the product of the entries in the diagonal, i.e. if T =
(aij) is upper triangular, then det(T ) = a11 · . . . · ann.

(4) Verify that the opening remark holds for the matrices A and B given above,
that is, det(AB) = det(A) det(B).

(5) Recall that when A is an invertible matrix, it satisfies AA−1 = A−1A = I.
Making use of the opening remark if necessary, reason why det(A−1) =
1/ det(A).

8. Let

A =

 −4 2 0
2 −1 0
0 1 1

 .
Let fA : R3 → R3 be the linear map defined as fA(v) = Av.



EXERCISES: SESSION 3

(1) What is the rank of the matrix A? Justify your answer.
(2) Let {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)} be the canonical basis of R3.

Compute f(e1), f(e2) and f(e3).
(3) Give a basis of the vector subspace S ⊂ R3 generated by f(e1), f(e2), f(e3).

9. A linear map f : Rn → Rn is referred to as a projection if it verifies f ◦f = f ,
i.e., f(f(v)) = f(v) for any vector v.

(1) Prove that if f is a projection, then Id− f is also a projection.
(2) If f is a projection, is f − Id a projection?
(3) Is the identity map Id a projection?
(4) Is the zero map Z a projection?
(5) Is the linear map defined by the matrix

A =

 1 0 0
0 1 0
0 0 0


a projection?

(6) Is the linear map defined by the matrix

A =
1

2

 1 0 −1
0 1 0
−1 0 1


a projection?

(7) Is the linear map defined by the matrix

A =

 1 0 0
0 −1 0
0 0 −1


a projection?

10. In general, you can craft your own projection f : Rn → Rn in three easy
steps:

(1) Pick any vector subspace S ⊂ Rn.
(2) Choose a basis of S, namely s1, . . . , sk, and extend it to a basis B of Rn.
(3) Define a linear map that maps the basis vectors of S to 0 and the other

basis vectors of B to themselves.


