
EXERCISES: SESSION 6

Orthonormal bases enjoy nice properties that make them suitable to describe and
think about vector spaces and linear transformations. This exercise list collection
portrays a step-by-step exercise to understand the so-called Gram-Schmidt process,
a well-known algorithm to manufacture an orthonormal basis out of any given basis.

Exercise 1. Let B = {v1, . . . , vn} be a collection of non-zero vectors in some
vector space V , such that vi ⊥ vj for each i 6= j, i.e., B is an orthogonal collection
of vectors. Justify that the vectors in B are linearly independent.

Remark. Exercise 1 conveys the idea that being orthogonal is a stronger notion
for irredundancy than linear independence. You can regard orthogonal vectors as
vectors having the least possible amount of redundancy between them. Also notice
that the converse is clearly not true: you may easily come up with many examples
of linearly independent vectors that are not orthogonal.

Exercise 2. Let v = (1, 0,−2) ∈ R3.

a) Find two vectors w1, w2 ∈ R3 that satisfy the following requirements: i)
they are linearly independent; ii) both are orthogonal to v.

b) Denote W = span{w1, w2}. Show that if some vector u is orthogonal to v,
then u ∈W .

Remark. You will find in textbooks and videos that this idea of taking all the
vectors that are orthogonal to all the vectors of a given vector space V ⊂ Rn has
a name: it is called the “orthogonal vector space” of V , denoted V ⊥. The sum
V + V ⊥ fills out Rn completely, but with minimum overlap, since V ∩ V ⊥ = {0}.

Exercise 3. Given the vectors v = (1, 1, 1) and w = (2,−1,−1) of R3. Let’s denote
the vector space they span V .

a) Compute length(v) and length(w)
b) Compute the matrix P of the linear transformation of π : R3 → R3 that

does the orthogonal projection onto the line V = span{v}
c) Compute the transform of w by P , i.e., the orthogonal projection of w onto

V which we will denote π(w).
d) Why is the vector e = w − π(w) orthogonal to v?
e) Justify that both {v, w} and {v, e} are bases of V .

Remark. Notice that B = {v, e} is an orthogonal basis for V , i.e., we have managed
to construct an alternative orthogonal basis for the vector space V . The main idea
conveyed by these steps is formalized as the Gram-Schmidt process, which can be
applied iteratively to collections of linearly independent vectors of any size.
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Exercise 4. Let’s consider a set of 3 linearly independent vectors {q1, q2, u} in R4,
with q1 = (0, 1, 0, 1), q2 = (−2, 1, 0,−1) and u = (1, 1, 1, 5).

a) Show that q1 and q2 are orthogonal.
b) Compute the matrix P of the linear transformation of π : R4 → R4 that

conducts the orthogonal projection onto the plane V = span{q1, q2}.
c) Is it true that doing the orthogonal projection onto V is the same as tak-

ing the orthogonal projection onto span{q1} and span{q2} separately, then
adding the results? More explicitly, if we denote πW the orthogonal pro-
jection onto some vector space W , is it true that the following relationship
holds for any vector v?

πspan{q1,q2}(v) = πspan{q1}(v) + πspan{q2}(v)

d) Compute the transform of u by P , i.e., the orthogonal projection of u onto
V which we will denote π(u).

e) Show that vector e = u− π(u) is orthogonal to both q1 and q2.
f) Justify that {q1, q2, e} and {q1, q2, u} are bases of the same vector space.

Exercise 5. Consider the linearly independent vectors u1 = (1, 1, 2, 0), u2 =
(1, 0, 1, 2) and u3 = (0, 1, 0, 1) of R4. Let A be the matrix that has u1, u2, u3
as columns.

a) Compute AtA.
b) Using the Gauss-Jordan elimination strategy, compute an orthonormal ba-

sis {q1, q2, q3} of C(A), the columns space of A.
c) How would you verify that span{u1, u2, u3} = span{q1, q2, q3}?


