UNDERSTADING LINEAR MAPS
WITH GAUSS-JORDAN ELIMINATION

ABSTRACT. We provide a condensed proof of the fundamental theorem of lin-
ear algebra in a Gauss-Jordan elimination fashion.

1.1. We denote R™*™ the collection of all matrices of shape m X n.

1.2. Any matrix A € R™*" is associated with a linear map that we can denote
fa:R* = R™,

1.3. Column-wise elementary operations can be of either of three kinds:

(1) Permutation of columns.
(2) Replacing a column ¢; with A¢; with A #£ 0.
(3) Replacing a column ¢; with ¢; + pc; for any p.

We denote e(A) the transform of a matrix A by a given elementary operation e.

1.4. Hereinafter our discussion will be based entirely on column-wise operations,
so we will drop “column-wise” and “column” from all our statements whenever
possible.

1.5. Each elementary operation of A is equivalent to multiplying A by an appro-
priate matrix £ € R™*". Hence, we say that E is the matrix representing the
elementary operation e whenever e(A) = AFE for all possible matrices A.

1.6. Note that elementary operations preserve the rank, i.e., rank(A) = rank(e(A)) =
rank(AFE). Can you see why?

1.7. In Gauss-Jordan elimination we always keep track of two matrices, that we can
simply represent as a tuple (A, B) where A € R™*™ and B € R"*". We convene
(A, B) ~ (A, B’) to mean that (A’, B’) results from (A, B) by applying the same
sequence of elementary operations to both matrices.

1.8. Gauss-Jordan elimination is the method whereby the pair (4,1d, «y,) is trans-
formed, by means of applying a sequence of elementary operations, into another
pair (L, B) where L has a canonical form known as “reduced echelon form”. This
means that L satisfies the following requirements:

(1) L is a lower column echelon matrix.

(2) The leading entries of L are 1.

(3) The leading entries of L are the only non-zero entries in their row.

Following our notation: (A,Id,«xn) ~ (L, B).

1.9. Given an input matrix A, Gauss-Jordan elimination leads to a unique matrix
L in reduced echelon form. We can stress this fact by defining a Gauss-Jordan
algorithm GJ : A — L(A) that accepts A as input and returns its unique reduced
column echelon form.
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1.10. Proposition. If (A,Id,,xn) ~ (L, B) then L = AB.

Proof. Let E = FE;---FEj) the product of the matrices encoding the elementary
operations that have been applied. By definition L = AF and B = Id,x,F = FE,
so it is clear that B = E, i.e., B keeps track of all the elementary operations that
have been applied to A that give L. It follows that L = AB. O

1.11. Observe that rank(B) = n. Can you figure out why?

1.12. Proposition. If A is a square, full-rank matrix, then L(A) = Id,,x, and
B=A""

Proof. Tt (A, Idyxn) ~ (Idyxn, B) for some matrix B, then we know by the previous
discussion that Id, xn, = AB, so B = A~1. O

1.13. For the next discussion, let (A,Id,x,) ~ (L, B), with L in reduced echelon
form. Let B=[By|...|Byland L=[Ly |...| Ly | 0|...] 0] specified by their

respective columns, where L, ..., L, are non-zero column vectors.
1.14. Theorem. rank(A4) = r, where r is the number of non-zero columns in

L. Moreover, Lq,...,L, form a basis of the column space of A, denoted C(A).
Therefore, dim C(A) = r.

1.15. Observe that the last n — r columns of L are zero. What does this mean?
1.16. Theorem. Bjy,..., B,_, form a basis of the null-space of A, denoted N(A).

Proof. The following are known facts:
(1) Bu,..., B, isabasis of R™; in particular, any subset is linearly independent.
(2) The vectors L; = AB; for each 1 < i < r form a linearly independent set.
(3) The vectors L; = AB; are zero for r + 1 < i < n. Consequently,
S =span{B; |r+1<i<n}}C N(A).
Let’s check that N(A) € S. By (1) we can write any v € N(A) as a linear
combination v = Y"1 ; \;B;. From the fact that v € N(A) and (3), it follows that
0=Av =73, NAB; = > !_, \iL;. By (2) this cannot hold unless A\; = 0 for
i=1,...,7. Thenwv € S. O

1.17. It follows that dim N(A) =n —r.

1.18. Fundamental Theorem of Linear Algebra. For any matrix A € R™*"
the following identity holds:

dim N(A) + dim C(A) = n.



