
UNDERSTADING LINEAR MAPS

WITH GAUSS-JORDAN ELIMINATION

Abstract. We provide a condensed proof of the fundamental theorem of lin-

ear algebra in a Gauss-Jordan elimination fashion.

1.1. We denote Rm×n the collection of all matrices of shape m× n.

1.2. Any matrix A ∈ Rm×n is associated with a linear map that we can denote
fA : Rn → Rm.

1.3. Column-wise elementary operations can be of either of three kinds:

(1) Permutation of columns.
(2) Replacing a column ci with λci with λ 6= 0.
(3) Replacing a column ci with ci + µcj for any µ.

We denote e(A) the transform of a matrix A by a given elementary operation e.

1.4. Hereinafter our discussion will be based entirely on column-wise operations,
so we will drop “column-wise” and “column” from all our statements whenever
possible.

1.5. Each elementary operation of A is equivalent to multiplying A by an appro-
priate matrix E ∈ Rn×n. Hence, we say that E is the matrix representing the
elementary operation e whenever e(A) = AE for all possible matrices A.

1.6. Note that elementary operations preserve the rank, i.e., rank(A) = rank(e(A)) =
rank(AE). Can you see why?

1.7. In Gauss-Jordan elimination we always keep track of two matrices, that we can
simply represent as a tuple (A,B) where A ∈ Rm×n and B ∈ Rn×n. We convene
(A,B) ∼ (A′, B′) to mean that (A′, B′) results from (A,B) by applying the same
sequence of elementary operations to both matrices.

1.8. Gauss-Jordan elimination is the method whereby the pair (A, Idn×n) is trans-
formed, by means of applying a sequence of elementary operations, into another
pair (L,B) where L has a canonical form known as “reduced echelon form”. This
means that L satisfies the following requirements:

(1) L is a lower column echelon matrix.
(2) The leading entries of L are 1.
(3) The leading entries of L are the only non-zero entries in their row.

Following our notation: (A, Idn×n) ∼ (L,B).

1.9. Given an input matrix A, Gauss-Jordan elimination leads to a unique matrix
L in reduced echelon form. We can stress this fact by defining a Gauss-Jordan
algorithm GJ : A 7→ L(A) that accepts A as input and returns its unique reduced
column echelon form.
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1.10. Proposition. If (A, Idn×n) ∼ (L,B) then L = AB.

Proof. Let E = E1 · · ·Ek the product of the matrices encoding the elementary
operations that have been applied. By definition L = AE and B = Idn×nE = E,
so it is clear that B = E, i.e., B keeps track of all the elementary operations that
have been applied to A that give L. It follows that L = AB. �

1.11. Observe that rank(B) = n. Can you figure out why?

1.12. Proposition. If A is a square, full-rank matrix, then L(A) = Idn×n and
B = A−1.

Proof. If (A, Idn×n) ∼ (Idn×n, B) for some matrix B, then we know by the previous
discussion that Idn×n = AB, so B = A−1. �

1.13. For the next discussion, let (A, Idn×n) ∼ (L,B), with L in reduced echelon
form. Let B = [ B1 | . . . | Bn ] and L = [ L1 | . . . | Lr | 0 | . . . | 0 ] specified by their
respective columns, where L1, . . . , Lr are non-zero column vectors.

1.14. Theorem. rank(A) = r, where r is the number of non-zero columns in
L. Moreover, L1, . . . , Lr form a basis of the column space of A, denoted C(A).
Therefore, dimC(A) = r.

1.15. Observe that the last n− r columns of L are zero. What does this mean?

1.16. Theorem. B1, . . . , Bn−r form a basis of the null-space of A, denoted N(A).

Proof. The following are known facts:

(1) B1, . . . , Bn is a basis of Rn; in particular, any subset is linearly independent.
(2) The vectors Li = ABi for each 1 ≤ i ≤ r form a linearly independent set.
(3) The vectors Li = ABi are zero for r + 1 ≤ i ≤ n. Consequently,

S = span{Bi | r + 1 ≤ i ≤ n}} ⊂ N(A).

Let’s check that N(A) ⊂ S. By (1) we can write any v ∈ N(A) as a linear
combination v =

∑n
i=1 λiBi. From the fact that v ∈ N(A) and (3), it follows that

0 = Av =
∑r

i=1 λiABi =
∑r

i=1 λiLi. By (2) this cannot hold unless λi = 0 for
i = 1, . . . , r. Then v ∈ S. �

1.17. It follows that dimN(A) = n− r.

1.18. Fundamental Theorem of Linear Algebra. For any matrix A ∈ Rm×n

the following identity holds:

dimN(A) + dimC(A) = n.


